The Internet that many of us take for granted today arose from a series of government-funded computer networking efforts. In 1969, the precursor to the Internet began with the U.S. Defense Department's ARPAnet. ARPA-funded researchers developed many of the protocols still used for most Internet communication. Several other agencies also developed networks so their researchers could communicate and share data. In 1981, for example, the National Science Foundation (NSF) provided a grant to establish the Computer Science Network (CSNET) to provide networking services to all university computer
This paper details a long-term evolving effort to provide evaluation instruction designed to address specific information needs for selected target groups from a centralized location within a networked environment. Additionally, this paper examines a content design process that focuses on user-centered data-appropriate evaluation methods where the content of the instructional system is comprehensive, organized, and presented for use by library researchers and practitioners in a variety of library settings and situational contexts. Specific examples of web-based evaluation instructional systems
DATE:
TEAM MEMBERS:
John SneadCharles McClureJohn BertotPaul Jaeger
How can research on teaching and learning be used to improve the design of e-content? The contents of this report are based on a series of seminars conducted during 2003 and 2004, funded by the Economic & Social Research Council (ESRC), that were coordinated by Lydia Plowman, University of Stirling. They were also sponsored by a number of organisations including Futurelab. Each seminar was attended by researchers from universities, creators and managers of companies that make educational resources, and people engaged in policy making or representing Government agencies
To explore how the United States can harness the powerful features of digital games for learning, the Federation of American Scientists, the Entertainment Software Association, and the National Science Foundation convened a National Summit on Educational Games, on October 25, 2005 in Washington, DC. The Summit brought together nearly 100 experts to discuss ways to accelerate the development, commercialization, and deployment of new generation games for learning.
DATE:
TEAM MEMBERS:
Federation of American ScientistsHenry Kelly
Through the Digital Media in Everyday Life research initiative, The Museum of Science and Industry, Chicago seeks to better understand our audience and their relationship to technology and digital media in order to inform the development of our own digital initiatives. Our definition of “audience” is necessarily broad, and includes visitors to the Museum as well as users of all our online, mobile, and social media experiences. Therefore it is not only important for us to understand what mobile devices visitors might bring into the Museum, but also how users behave online and in social networks
Millions of children visit virtual worlds every day. In such virtual play spaces as Habbo Hotel, Toontown, and Whyville, kids chat with friends from school, meet new people, construct avatars, and earn and spend virtual currency. In Connected Play, Yasmin Kafai and Deborah Fields investigate what happens when kids play in virtual worlds, how this matters for their offline lives, and what this means for the design of educational opportunities in digital worlds. Play is fundamentally important for kids’ development, but, Kafai and Fields argue, to understand play in virtual worlds, we need to
The article focuses on an educational program called Game Design Through Mentoring and Collaboration. The program is a partnership between McKinley Tech and George Mason University (GMU) in Fairfax, Virginia. Through this program the teachers ensure students understand the pathways needed for participation in the science, technology, engineering, and math (STEM) enterprise. Kevin Clark, is the principal investigator of the program.
The article offers information on Quin Etnyre, a 13-year-old boy from Southern California who founded the electronics company Qtechknow. Topics discussed include Etnyre's invention of the ArduSensors plug-and-play electronic device components, Etnyre's used of the open-source electronics prototyping platform Arduino to began his company, and Entyre's hobbies such as sports including volleyball, track, and swimming.
In the article, the author discusses technological developments in the education sector in the U.S. as of October 2013. He cites the introduction of the Next Generation Science Standards (NGSS) in early 2013 that is focused on science and engineering in the K-12 curriculum. The NGSS' four disciplinary core concepts include Earth and Space Sciences, Physical Sciences, and Engineering and Technology. He presents several NGSS-friendly software like Celestia and NetLogo, as well as hardware such as the Arduino open-source programmable controller.
This book reviews the available research on learning science through interaction with digital simulations and games. It considers the potential of digital games and simulations to contribute to learning science in schools, in informal out-of-school settings, and everyday life. The book also identifies the areas in which more research and research-based development is needed to fully capitalize on this potential.
The main objective of the CONNECT project is to develop an innovative pedagogical framework that attempts to blend formal and informal learning, proposing an educational reform to science teaching. The project will create a network of museums, science centres and schools across Europe, to develop, apply and evaluate learning schemes by pointing to a future hybrid classroom that builds on the strengths of formal and informal strategies. The proposed approach will impact upon the fields of instructional technology, educational systems design and museum education. It will explore the integration
DATE:
TEAM MEMBERS:
Sofoklis SotiriouEleni ChatzichristouStavros SavasNikolaos OuzounoglouLynn DierkingSalmi Hannu SakariAvi HoffsteinSherman Rosenfeld
We describe OctoPocus, an example of a dynamic guide that combines on-screen feedforward and feedback to help users learn, execute and remember gesture sets. OctoPocus can be applied to a wide range of single-stroke gestures and recognition algorithms and helps users progress smoothly from novice to expert performance. We provide an analysis of the design space and describe the results of two experiments that show that OctoPocus is significantly faster and improves learning of arbitrary gestures, compared to conventional Help menus. It can also be adapted to a markbased gesture set