Integrating science, technology, engineering, and mathematics (STEM) subjects in pre-college settings is seen as critical in providing opportunities for children to develop knowledge, skills, and interests in these subjects and the associated critical thinking skills. More recently computational thinking (CT) has been called out as an equally important topic to emphasize among pre-college students. The authors of this paper began an integrated STEM+CT project three years ago to explore integrating these subjects through a science center exhibit and a curriculum for 5-8 year old students. We
DATE:
TEAM MEMBERS:
Morgan HynesMonica CardellaTamara MooreSean BrophySenay PurzerKristina TankMuhsin MeneskeIbrahim YeterHoda Ehsan
We developed a multi-touch interface for the citizen science video game Foldit, in which players manipulate 3D protein structures, and compared multi-touch and mouse interfaces in a 41-subject user study. We found that participants performed similarly in both interfaces and did not have an overall preference for either interface. However, results indicate that for tasks involving guided movement to dock protein parts, subjects using the multi-touch interface completed tasks more accurately with fewer moves, and reported higher attention and spatial presence. For tasks involving direct
DATE:
TEAM MEMBERS:
Thomas MuenderSadaab Ali GulaniLauren WestendorfClarissa VerishRainer MalakaOrit ShaerSeth Cooper
Although hundreds of citizen science applications exist, there is lack of detailed analysis of volunteers' needs and requirements, common usability mistakes and the kinds of user experiences that citizen science applications generate. Due to the limited number of studies that reflect on these issues, it is not always possible to develop interactions that are beneficial and enjoyable. In this paper we perform a systematic literature review to identify relevant articles which discuss user issues in environmental digital citizen science and we develop a set of design guidelines, which we evaluate
DATE:
TEAM MEMBERS:
Artemis SkarlatidouAlexandra HamiltonMichalis VitosMuki Haklay
This paper contributes a theoretical framework informed by historical, philosophical and ethnographic studies of science practice to argue that data should be considered to be actively produced, rather than passively collected. We further argue that traditional school science laboratory investigations misconstrue the nature of data and overly constrain student agency in their production. We use our “Data Production” framework to analyze activity of and interviews with high school students who created data using sensors and software in a ninth-grade integrated science class. To understand the