Skip to main content

Community Repository Search Results

resource project Public Programs
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE: -
TEAM MEMBERS: Robert Coulter Eric Klopfer Jere Confrey
resource project Public Programs
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE: -
TEAM MEMBERS: Tirupalavanam Ganesh Monica Elser Stephen Krause Dale Baker Sharon Robinson-Kurplus
resource project Informal/Formal Connections
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE: -
TEAM MEMBERS: Travis Southworth-Neumeyer Daniel Calvert
resource project Public Programs
This proposal, the "Dan River Information Technology Academy (DRITA)," is a request for a three-year program for high school students from underserved populations who are interested in pursuing IT or STEM careers. The overall goal of DRITA is to provide opportunities for promising African American or Hispanic youth to (1) develop solid Information Technology skills and (2) acquire the background and encouragement needed to enable them to pursue higher education in STEM fields, including IT itself and other fields in which advanced IT knowledge is needed. A total of 96 students will be recruited over the course of the three years. Each DRITA participant will receive 500 hours of project-based content. The project includes both school-year modules and a major summer component. Delivery components will include a basic IT skills orientation; content courses in areas such as animation, virtual environment modeling, advanced networking, programming, GIS, robotics, and gaming design; externships; a professional conference/trade show "simulation," and college/career counseling. Parent involvement is an integral part of the program and includes opportunities for parents to learn from participants, joint college visits, and information sessions and individual assistance in the college admission process.
DATE: -
TEAM MEMBERS: Julie Brown Elizabeth Nilsen Maurice Ferrell
resource project Professional Development, Conferences, and Networks
Rhode Island Information Technology Experiences for Students and Teachers (RI-ITEST) is a comprehensive ITEST project for high school students and teachers. The goal of RI-ITEST is to prepare students from diverse backgrounds for careers in information technologies by engaging them in exciting, inquiry-based learning activities that use sophisticated computational models in support of a revolutionary science curriculum. It advances science education by enhancing the Physics First initiative in Rhode Island through the use of NSF funded student materials based on molecular modeling and promotes IT education by teaching modeling skills and providing students with career and vocational information on the use of computational models. The project provides over 120 hours of credit-bearing activities for 100 teachers and full support for classroom implementation. RI-ITEST is developing an optimal placement of the interactive materials from CC's Science of Atoms and Molecules project in the Physics First courses in Rhode Island; developing IT materials that are coordinated with the student materials that emphasize modeling skills and the career and vocational dimensions of computational modeling; preparing100 diverse Rhode Island science teachers in two cohorts to offer a course in the Physics-Chemistry-Biology sequence; developing materials and supports for using molecular dynamics and related IT materials for teachers in Rhode Island and elsewhere who are not ITEST participants; generating evidence for the effectiveness of the IT-enhanced project materials for increasing student learning and changing student attitudes about science, mathematics, and technology careers; reaching parents, guidance counselors, school administrators, and business partners with information about the project, student productions, and evidence for effectiveness; disseminating materials and findings to other teachers, programs, and districts nationwide.
DATE: -
TEAM MEMBERS: Daniel Damelin Gerald Kowaiczyk James Magyar
resource project Media and Technology
Maine is a rural state with unequal access to computers and information technology. To remedy this, the Maine laptop program supplies iBooks to every seventh and eighth grade student in the state. The goal of EcoScienceWorks is to build on this program and develop, test and disseminate a middle school curriculum featuring computer modeling, simple programming and analysis of GIS data coupled with hands-on field experiences in ecology. The project will develop software, EcoBeaker: Maine Explorer, to stimulate student exploration of information technology by introducing teachers and students to simple computer modeling, applications of simulations in teaching and in science, and GIS data manipulation. This is a three-year, comprehensive project for 25 seventh and eighth grade teachers and their students. Teachers will receive 120 contact hours per year through workshops, summer sessions and classroom visits from environmental scientists. The teachers' classes will field test the EcoScienceWorks curriculum each year. The field tested project will be distributed throughout the Maine laptop program impacting 150 science teachers and 17,000 middle school students. EcoScienceWorks will provide middle school students with an understanding of how IT skills and tools can be used to identify, investigate and model possible solutions to scientific problems. EcoScienceWorks aligns with state and national science learning standards and integrates into the existing middle school ecology curriculum. An outcome of this project will be the spread of a field tested IT curriculum and EcoBeaker: Maine Explorer throughout Maine, with adapted curriculum and software available nationally.
DATE: -
TEAM MEMBERS: Walter Allan Eric Klopfer Eleanor Steinberg
resource project Media and Technology
This is a proposal for a 3 year, $1,297,456 project to be conducted as collaboration among 5 higher education institutions and one school system across the country, with St. Joseph's University in Philadelphia, PA serving as the lead institution (other collaborators are from Colorado School of Mines, Ithaca College, Santa Clara University, Duke University, and Virginia Beach School System). The primary goal is to attract and retain students in computer science, especially women and underrepresented minorities (including two EPSCoR states). To this end, the project will use Alice, a software program that utilizes 3-D visualization methods, as a medium to create a high-level of interest in computer graphics, animation, and storytelling among high school students, hence to build understanding of object-based programming. Such an IT focus on media and animation is aligned with national computer science standards. The project will build a network of college and high school faculty, who will offer workshops and provide continuing support during the academic year. In each site, pairs of teachers from each participating school (total = 90) will learn with university faculty via a 3-week summer program in which an introduction to using Alice for teaching will be followed by teacher development of materials for students that will then be used to teach high school students. An experimental start at one site will be followed by implementation at four additional sites and culminated with revised implementation at the sixth site (1-4-1 design).
DATE: -
TEAM MEMBERS: Susan Rodger
resource project Public Programs
This comprehensive ITEST project would provide sixty middle and high school teachers with an introduction to Geographic Information System (GIS) and Global Positioning System (GPS) technologies. The project, which brings together a leadership team of educators, science researchers and experts in resource management, is based at the University of Maryland Center for Environmental Science Appalachian Laboratory, a research facility that studies stream and forest ecosystems. The program will focus on environmental applications in which teachers use probes to investigate the properties of local forest and stream ecosystems. Teachers will apply their technology experiences to creating standards based lessons aligned with local curricula. The teacher participants will be recruited from rural, underserved Appalachian communities in western Maryland and northern West Virginia. Local students will be recruited to participate in a four-day summer session that includes field-testing the proposed lessons and learning about career opportunities in information technology.
DATE: -
TEAM MEMBERS: Cathlyn Merrit Davis Philip Townsend
resource project Public Programs
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.
DATE: -
TEAM MEMBERS: Sandra Parker Scott Raymond
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman
resource project Media and Technology
This project continues the development, testing, and use of a series of web-based computer simulations for improving the teaching and learning of physics. It expands the number of simulations in physics, creates new simulations addressing introductory chemistry, creates simulations addressing the conceptual understanding of equations in solving science problems, and further refines some existing simulations. It increases, by approximately 35, the 35 online interactive simulations that have been developed for teaching physics. The project produces and widely disseminates on-line supporting materials for use in undergraduate and high school science courses. The supporting materials include: guided-discovery, tutorial worksheets; a list of learning goals; materials to support in-lecture, homework, and laboratory use; assessment instruments; and other user-contributed materials. The simulations being introduced and their effectiveness are being evaluated in at least eight additional courses in physics and chemistry at the University of Colorado and a diverse set of partner institutions. The materials are being extensively tested to ensure that they are easy to use and effective at promoting deep conceptual understanding and positive attitudes about science and technology.
DATE: -
TEAM MEMBERS: Carl Wieman Noah Finkelstein Katherine Perkins