Skip to main content

Community Repository Search Results

resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Media and Technology
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.

Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne
resource project Media and Technology
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.

The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Michael Horn Brian Magerko Jason Freeman
resource project Media and Technology
This project formed a partnership between a research team with experience in computer science (CS) education and learning sciences research and a newly fashioned practitioner team focused on building a grassroots, informal, volunteer group created to help women help themselves and others learn to write computer code. This research-practitioner partnership had a two-pronged focus, first on improving the program offered to learners through making adjustments based on research findings, and second on investigating the phenomenon of how women in the workforce informally learn CS skills that enable them to rewrite their career paths to contribute to what we know from research. The context of the study was situated in the virtual community that has formed around the phenomenally successful Salesforce Customer Relationship Management software platform.

This Exploratory Pathways project aimed to fill a gap in the research; we know little about the phenomenon of adult women in the workforce who are patching together resources to learn CS skills with a goal of job enhancement or job change. This project took an ethnographic approach to studying the informal learning (both through online, written resources and through sharing of knowledge with others) of the women involved in a 10-week, virtual Women’s Coaching and Learning group. The organization of this group consisted of learners—novice coders in the Apex language that is used on the Salesforce software platform, of coaches—more knowledgeable coders, and of a steering committee that ran the group and created the informal curriculum followed in the 10-week course.

Our overarching research question in this study was: In what ways are informal CS learning opportunities being used and created by adult women, what are their experiences with those opportunities, and how does this suggest ways to enhance those opportunities in the future to increase effectiveness in broadening access to and engagement in informal CS learning experiences for women?

We broke the question down into a number of sub questions, including:


Sociocultural context: What past gendered interactions do women report that discouraged (or encouraged) them from learning to code? What do interactions look like in female-only coaching and learning groups? In what ways does a coaching and learning group support persistence? What social barriers and supports outside the group affect persistence?
Personal context: What are the characteristics and backgrounds of female administrators who seek out resources to teach themselves to code? What are the motivations for these women to teach themselves to code? What motivates them to seek out and join all-women coding groups?
Physical context: How are women learning to code both through written resources and in virtual, informal coaching and learning classes? What are the conceptual barriers and supports that they encounter, and what works for women in these classes to overcome barriers? What conceptual barriers and supports affect persistence?
Persistence and identity: In what ways does participating in a learning group with female coaching motivate (or not) women to persist in learning to code? How do their goals or reasons for learning to code change through their participation? How does their identity as a “coder” change or shift as they participate?


Our findings for these subquestions are summarized in the “project products” linked to below.
DATE: -
TEAM MEMBERS: Louise Ann ("Lou Ann") Lyon Jill Denner
resource project Media and Technology
Citizen science engages members of the public in science. It advances the progress of science by involving more people and embracing new ideas. Recent projects use software and apps to do science more efficiently. However, existing citizen science software and databases are ad hoc, non-interoperable, non-standardized, and isolated, resulting in data and software siloes that hamper scientific advancement. This project will develop new software and integrate existing software, apps, and data for citizen science - allowing expanded discovery, appraisal, exploration, visualization, analysis, and reuse of software and data. Over the three phases, the software of two platforms, CitSci.org and CyberTracker, will be integrated and new software will be built to integrate and share additional software and data. The project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects such as those that monitor disease outbreaks, collect biodiversity data, monitor street potholes, track climate change, and any number of other possible topics more possible, efficient, and impactful through shared software.

The project will develop a cyber-enabled Framework for Advancing Buildable and Reusable Infrastructures for Citizen Science (Cyber-FABRICS) to elevate the reach and complexity of citizen science while adding value by mobilizing well-documented data to advance scientific research, meta-analyses, and decision support. Over the three phases of the project, the software of two platforms, CitSci.org and CyberTracker, will be integrated by developing APIs and reusable software libraries for these and other platforms to use to integrate and share data and software. Using participatory design and agile methods over four years, the project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science software and data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects and any number of other possible topics more possible, efficient, and impactful through shared software and data. Adoption of Cyber-FABRICS infrastructure, software, and services will allow anyone with an Internet or cellular connection, including those in remote, underserved, and international communities, to contribute to research and monitoring, either independently or as a team. This project is also being supported by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Gregory Newman Louis Liebenberg Stacy Lynn Melinda Laituri
resource project Media and Technology
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.

The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE: -
TEAM MEMBERS: Geza Gyuk Pamela Gay Christopher Lintott Michael Raddick Lucy Fortson John Wallin
resource research Media and Technology
The majority of the world’s billions of biodiversity specimens are tucked away in museum cabinets with only minimal, if any, digital records of the information they contain. Global efforts to digitize specimens are underway, yet the scale of the task is daunting. Fortunately, many activities associated with digitization do not require extensive training and could benefit from the involvement of citizen science participants. However, the quality of the data generated in this way is not well understood. With two experiments presented here, we examine the efficacy of citizen science participants
DATE:
TEAM MEMBERS: Elizabeth Ellwood Henry Bart Michael Doosey Dean Jue Justin Mann Gil Nelson Nelson Rios Austin Mast
resource research Media and Technology
This introduction presents the essays belonging to the JCOM special issue on User-led and peer-to-peer science. It also draws a first map of the main problems we need to investigate when we face this new and emerging phenomenon. Web tools are enacting and facilitating new ways for lay people to interact with scientists or to cooperate with each other, but cultural and political changes are also at play. What happens to expertise, knowledge production and relations between scientific institutions and society when lay people or non-scientists go online and engage in scientific activities? From
DATE:
TEAM MEMBERS: Alessandro Delfanti
resource research Media and Technology
In this book, Brian G. Southwell discusses how disparities in information-sharing arise and what can be done to alleviate them. In all sorts of ways and for all sorts of reasons, people have always sought to share information among their family and other social networks. However, this sharing has never been equal: inevitably, some people are better-informed than others and some are more socially-connected than others. At first glance, the plethora of communication tools and technologies available nowadays should help democratise information and reduce disparity but differences in how, when and
DATE:
TEAM MEMBERS: Ann Grand
resource project Media and Technology
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.

Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.

These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE: -
TEAM MEMBERS: Richard Ladner Libby Cohen Sheryl Burgstahler William McCarthy
resource research Media and Technology
For decades, particle physicists have been using open access archives of preprints, i.e. research papers shared before the submission to peer reviewed journals. With the shift to digital archives, this model has proved to be attractive to other disciplines: but can it be exported? In particle physics, archives do not only represent the medium of choice for the circulation of scientific knowledge, but they are central places to build a sense of belonging and to define one's role within the community.
DATE:
TEAM MEMBERS: Alessandro Delfanti
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. How can we come to terms with the complex social impact of new cutting-edge fields like synthetic biology, robotics, genetics and machine learning? In order to manage these transformative changes, people not only need to understand science and technology, but also to actively participate in shaping a world where our ability to control the building blocks of life and cognition is vastly expanded. The Transmedia Museum will use the interactive, engaging nature of
DATE:
TEAM MEMBERS: Ed Finn Steve Gano Ruth Wylie David Guston Micah Lande Rae Ostman