Successful online students must learn and maintain motivation to learn. The Self-regulation of Motivation (SRM) model (Sansone and Thoman ) suggests two kinds of motivation are essential: Goals-defined (i.e., value and expectancy of learning), and experience-defined (i.e., whether interesting). The Regulating Motivation and Performance Online (RMAPO) project examines implications using online HTML lessons. Initial project results suggested that adding usefulness information (enhancing goals-defined motivation) predicted higher engagement levels (enhancing experience), which in turn predicted
DATE:
TEAM MEMBERS:
Carol SansoneTamra FraughtonJoseph ZacharyJonathan ButnerCecily Heiner
Young people today have grown up living substantial portions of their lives online, seeking entertainment, social relationships, and a place to express themselves. It is clear that participation in online communities is important for many young people, but less clear how this translates into civic or political engagement. This volume examines the relationship of online action and real-world politics. The contributors discuss not only how online networks might inspire conventional political participation but also how creative uses of digital technologies are expanding the boundaries of politics
Digital media and technology have become culturally and economically powerful parts of contemporary middle-class American childhoods. Immersed in various forms of digital media as well as mobile and Web-based technologies, young people today appear to develop knowledge and skills through participation in media. This MacArthur Report examines the ways in which afterschool programs, libraries, and museums use digital media to support extracurricular learning. It investigates how these three varieties of youth-serving organizations have incorporated technological infrastructure and digital
DATE:
TEAM MEMBERS:
Joan Ganz Cooney CenterBecky Herr-StephensonDiana RhotenDan PerkelChristo Sims
This report summarizes the results of a three-year ethnographic study, funded by the John D. and Catherine T. MacArthur Foundation, into how young people are living and learning with new media in varied settings—at home, in after school programs, and in online spaces. The authors present empirical data on new media in the lives of American youth in order to reflect upon the relationship between new media and learning.
DATE:
TEAM MEMBERS:
University of California, IrvineMizuko ItoBecky Herr-Stephenson
This report was completed by the Program Evaluation Research Group at Endicott College in October 2013. It describes the outcomes and impacts of a four-year, NSF-funded project called Go Botany: Integrated Tools to Advance Botanical Learning (grant number 0840186). Go Botany focuses on fostering increased interest in and knowledge of botany among youth and adults in New England. This was being done through the creation of an online flora for the region, along with the development of related tools, including PlantShare, and a user-friendly interface for ‘smartphones’. In January 2012, the PI
DATE:
TEAM MEMBERS:
Judah LeblangNew England Wild Flower Society
This report combines the views of education researchers, technology developers, educators, and researchers in emerging fields such as educational data mining and technology-supported evidence-centered design to present an expanded view of approaches to evidence. It presents the case for why the transition to digital learning warrants a re-examination of how we think about educational evidence. The report describes approaches to evidence-gathering that capitalize on digital learning data and draws implications for policy, education practice, and R&D funding.
DATE:
TEAM MEMBERS:
U.S. Department of EducationOffice of Educational Technology
This report is the National Education Technology Plan (NETP) submitted by the U.S. Department of Education (ED) to Congress. It presents five goals with recommendations for states, districts, the federal government, and other stakeholders. Each goal addresses one of the five essential components of learning powered by technology: Learning, Assessment, Teaching, Infrastructure, and Productivity. The plan also calls for "grand challenge" research and development initiatives to solve crucial long-term problems that the ED believes should be funded and coordinated at a national level.
DATE:
TEAM MEMBERS:
U.S. Department of EducationDaniel AtkinsJohn BennettJohn Seely BrownAneesh ChopraChris DedeBarry FishmanLouis GomezMargaret HoneyYasmin KafaiMaribeth LuftglassRoy PeaJim PellegrinoDavid RoseCandace ThilleBrenda Williams
This paper reports the results of a study designed to determine people's preferences for different types of Web-based educational activity. Researchers identified six activity types for comparison: Creative Play, Guided Tour, Interactive Reference, Puzzle/Mystery, Role-playing Story and Simulation. They collected two sets of data: 1) user exit surveys evaluating the study site and preferred genre or type of learning activity and 2) serve statistics indicating the duration of stay. Researchers found clear differences in preferences between adults and children.
Museums continue to invest in and experiment with internet technologies and increasingly with social software environments (i.e., social networking). These technologies have the potential to lead to a number of important intellectual and social outcomes such as learning, community building, and greater public understanding of, in our case, science. It is the possibility of supporting learning in digital environments that is the focus of this research project. In our previous work, online facilitation has emerged as a big deal and perhaps determines successful online museum environments from unsuccessful environments. To study facilitation, we seek to understand facilitation styles and their outcomes in two distinct but representative museum environments. The first, Science Buzz at Science Museum of Minnesota, is a popular website identified by the field to be exemplary because of its educational value and its use of Web 2.0 functionality. The second case is the more distributed use of social software at the North Carolina Museum of Life and Science (MLS). Instead of creating learning platforms that are hosted internally, MLS is experimenting with building learning communities where people are already gathering on the web like Flickr, Twitter, and YouTube. We anticipate being able to identify clear, replicable facilitation styles and to identify outcomes associated with those styles.
Realizing the power of CyberLearning to transform education will require vision, strategy, and an engaged, talented community. Activities are needed to energize the community, refine and sharpen the path forward, and provide a more active and ongoing forum for clarifying the big ideas and challenging questions. In response to this need, SRI International, together with the Lawrence Hall of Science and with key support from the National Geographic Society, will organize a set of activities to advance a shared vision of the future of learning, encompassing the systems, people, and technology dimensions mutually necessary for any scalable and lasting advances in education. The innovative format for these activities is inspired by the TED talks, Wikipedia, and social networking. As in TED, a small set of leading researchers will be selected to give very short, very high quality, stimulating talks. These CyberLearning Talks will be featured at a 1-day summit meeting in Washington, DC, streamed so that local cyberlearning research communities may participate at a distance, and posted on a website. As in Wikipedia, CyberLearning Pages will be created, each page featuring a synopsis of a big idea in CyberLearning and the relevant research challenges. The 1-day conference will be followed by a small 1-day workshop focusing on how to evaluate cyberlearning efforts, identify progress, and identify important new directions. Finally, to disseminate and stimulate conversation about both the video talks and Wikipedia entries, a presence for the community will be created on social networking sites. The target outcomes of the effort will be (i) a cyberlearning research community with participants from across the many current constituent communities, and fostered awareness and appreciation of the broad range of expertise and interests across that wider community; (ii) foundations for sustained discussion of big ideas, insights, and challenges to help this new community define a more engaged, crisper vision of its own future, (iii) a community resource that can become a site for interconnecting stakeholders in the CyberLearning community and supporting investigators in improving field-generated proposals, and (iv) an emerging sense of direction for CyberLearning among a wider audience of leaders. Such community building and awareness is expected to foster collaborations that will lead to innovative and research-grounded ways of using technology to transform education -- formal and informal and across a lifetime.
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
resourceresearchWebsites, Mobile Apps, and Online Media
ISE professionals can use this study as a guide to help them in understanding the uses of social networking sites (SNS). The author maintains that SNS provide a space that allows the public to become better acquainted with the work of scientists, stimulating transparency and accountability, and that encourages the public to become active contributors to scientific research and debate.