To appreciate what a huge difference there is between the author of a peer-reviewed journal article and just about any other kind of author we need only remind ourselves why universities have their "publish or perish" policy: aside from imparting existing knowledge to students through teaching, the work of a university scholar or scientist is devoted to creating new knowledge for other scholars and scientists to use, apply, and build upon, for the benefit of us all. Creating new knowledge is called "research", and its active use and application are called "research impact". Researchers are
In the midst of a debate on access to information, the World Health Organization and the FAO have decided to develop a strategy to guarantee the right of poor countries to have free access to scientific publications. This right is often denied, mainly because of high subscription costs. For this reason, universities and research centres in southern countries must forego buying magazines, which are a valuable instrument for updating, and exchanging information on research and scientific issues. This choice has been made in an historical period when the industrialized world is marked by a
A ghost is wandering around the web: it is called open access, a proposal to modify the circulation system of scientific information which has landed on the sacred soil of scientific literature. The circulation system of scientific magazines has recently started faltering, not because this instrument is no longer a guarantee of quality, but rather for economic reasons. In countries such as Great Britain, as shown in the following chart, the past twenty years have seen a dramatic increase in subscription fees, exceeding by far the prices of other publishing products and the average inflation
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
The purposes of the STUDIO 3D evaluation were to collect information about the impact upon student learning as a result of participating in the STUDIO 3D Project, as well as to elicit information for program improvement. Areas of inquiry include recruiting and retention, impact on project participants, tracking student impacts, and the project as a whole.
The Internet that many of us take for granted today arose from a series of government-funded computer networking efforts. In 1969, the precursor to the Internet began with the U.S. Defense Department's ARPAnet. ARPA-funded researchers developed many of the protocols still used for most Internet communication. Several other agencies also developed networks so their researchers could communicate and share data. In 1981, for example, the National Science Foundation (NSF) provided a grant to establish the Computer Science Network (CSNET) to provide networking services to all university computer
This article describes the Multimedia Arts Education Program (MAEP), an ongoing, intensive after school computer-mediated art technology program begun in 1996 by the Tucson Pima Arts Council (TPAC) in Tucson, Arizona. This five-semester program targets at-risk middle school youth from disadvantaged families. Students worked with professional artist/teachers, learning to do computer graphics and publishing, language arts and word processing, computer animation and video production.
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
The Tech Museum of Innovation is producing a 3,000 square-foot permanent exhibition, complementary online acitivities, and a Design Challenge curriculum to engage visitors in the exploration of Internet techologies. The goals of the project are to enhance the technological literacy of middle school students, provide the general public with tools, experience, and confidence to participate in shaping the future of the internet, and advance the informal science education community through applied research in networked exhibit technology. Two distinct features of the exhibit are: 1) The Smart Museum, a computer network linking gallery and online expereinces, and 2) "dynamic content," a set of strategies for rapid exhibit updates that will mirror the changing Internet for the life of the exhibition. The Design Challenge curriculum will be used at the museum, in outreach to classrooms and community centers, and in training sessions for science educators. The summative research will be shared with the science education community via The Tech's web site as well as professional seminars, publications and conferences.
Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE:
-
TEAM MEMBERS:
Brenda StegallJanet StantonHeather Johnston NicholsonShalonda MurrayJoe Martinez
The Educational Broadcasting Corporation (WNET in New York) is developing and producing a new public television project exploring cutting-edge technology. The project consists of an eight-part hourly broadcast component; six 60-second "mini-programs;" a World Wide Web component; and extensive educational outreach targeted to adults aged 25-39 and older. The topics for the eight programs in season one are: Replacements - prosthetic devices and biologically electronic artificial body parts In Search of Eve - the race to decode the human genome Light of the 21st Century - Fiber Optics Nanotechnology - molecular manipulation of materials Technospy - technologies used to gain information Sports Technology - the pursuit of better equipment and training regimes Artificial Intelligence - efforts to create computers the mimic human intelligence Appropriate Technologies - technologies that use local, inexpensive material Beth Hoppe, WNET's Director of Science Programs will serve as Executive Producer for the series. Each of the programs would be produced by an independent producer selected by WNET. Content advisors include: Angela Christiano, Departments of Dermatology, Genetics and Development, Columbia University; Sheila Sen Jasanoff, Harvard University JFK School of Government; Horace Freeland Judson, Center for History of Recent Science, George Washington University; Michio Kaku, theoretical physicist, CUNY and host, Explorations radio series; Wilfred Pinfold, Microprocessor Research Labs, Intel Corp.; and Barbara Wilson, chief technologist, NASA's Jet Propulsion Laboratory
DATE:
-
TEAM MEMBERS:
Beth HoppeTamara RobinsonWilliam GrantBarbara Flagg