This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.
The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
Iteration is a central practice in art and science; however, it has yet to be deeply explored in STEAM learning environments. This study adopts a sociomaterial orientation (Fenwick and Edwards, 2013) to characterize the nature of iteration in one STEAM activity, an Optics Design Challenge, with informal educators. We found that iteration emerged as “microcycles” of interactions, specifically as adjustments, additions, and negotiations in both material artifacts and the narrative.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Many informal learning institutions use STEAM approaches to engage diverse learners. Our project aims to support educators in libraries, museums, and after school programs through a STEAM professional development (PD) series. Our PD approach is centered around a set of core STEAM practices that prioritize STEAM mindset and identity work. Participants engage in exemplar activities and design new experiences for their specific teaching and learning contexts. The series involves in- person sessions, online training, and team
This project will engage community members and youth in 13 rural, tribal, and Hispanic communities in the Four Corners Region of the south western U.S. with the science and cultural assets of water. Water is a significant and scarce resource in this geographic area. The Four Corners Region experiences low annual precipitation and high year-to-year fluctuations in water availability. Thus, water is a topic of great interest to community members, whose lives are shaped by water-related events such as drought, flood, and wildfires. Rural tribal, and Hispanic communities are often underserved with respect to science programming; their public libraries often function as the local science center. The project's inter-disciplinary team will develop, deploy, research, and evaluate an interactive traveling exhibit for small libraries, designed around regional water topics and complemented by interactive programming and community engagement events. Additionally, the team will build local capacity by fostering a community of practice among the host librarians, including participation through a support system--the STAR Library Network--to increase their science programming.
This project creates a traveling exhibit and complementary programming around water topics. Through an exhibit co-design model, communities will provide input in the exhibit development, identify water topics that are critical to them, and engage the multi-generational audiences. The exhibit merges the captivating attraction of water with the underlying science content and community context, giving patrons the opportunity to explore these topics through active learning stations, informational panels, citizen science-based activities, and an interactive regional watershed model. Artistic representations of water will be developed by community groups and incorporated into the exhibit as a dynamic display element.
Project goals are to:
Spark interest in and increase understanding of water as a critical resource and cultural asset across rural, tribal, and Hispanic communities in the Four Corners Region.
Increase availability of and access to engaging programming for underserved rural, tribal, and Hispanic communities focusing on the science and cultural aspects of water in the Four Corners Region.
Build capacity for libraries to implement water-focused science programs, and increase available science learning and science communication resources tailored to these informal learning settings.
Foster a Community of Practice (CoP) for participating librarians to support the development of their programming and content knowledge.
Advance the body of research on informal learning environments and their role in developing community members' science ecosystems and science identities, particularly in library settings.
The project team will rigorously assess the extent to which program approaches and components stimulate patrons' interest in science, increase science knowledge, and support building a personal science identity. The model is based on the STEM Learning Ecosystems Framework. Robust evaluation will guide the program development through a front-end needs assessment and iterative revision cycles of implementation strategies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This project will focus on addressing the challenges faced by rural youth with a particular emphasis on those youth who are English Language Learners. The project will provide informal education via libraries and librarians which can provide unique opportunities for rural youth and communities. Building on several years of research and experimentation, this project will augment the formal education sector, as well. The settings for the project are 12 rural school districts in largely Latinx communities. The project partners are the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation and the Twin Cities Public Television. Expertise from the Latinx community will play a significant part in the project. The project will engage learners from diverse backgrounds, ages, and interests in science through a coordinated and tested strategy incorporating three Learning Pathways (i.e., Science Learning Spaces, Programs, and Science Kits) in a public library environment. The results should yield a model for Nationwide application.
The main goals are: 1) to establish learning pathways to engage rural communities through exhibit host libraries and (2) to increase art-rich STEM learning opportunities for rural communities through libraries and their support systems. Building on an established training model, the project will introduce library staff to the STEAM content of the exhibits and guide them in developing their own STEAM Learning Pathways. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project. The project draws on existing professional infrastructure to increase library staff capacity through ALA and the Institute's established community of practice. The researchers will study the efficacy of each pathway, alone and in tandem, on participant's interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews and case studies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Libraries can provide unique opportunities for rural youth and communities. Phase III of the STAR Library Network will be a collaboration with 12 rural school districts in largely Latinx communities to address the challenges faced by rural youth, particularly English Language Learners. The project will use a coordinated and tested strategy to establish three learning pathways in public libraries: science learning spaces with exhibits, library programs, and science kits. These resources will provide learners with art-rich STEM learning opportunities.
Partners
Project partners include the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation, and Twin Cities Public Television. The project will rely significantly on expertise from the Latinx community.
Project Plan
Building on an established librarian training model, the project will introduce library staff to the STEAM content and guide them in developing their own STEAM Learning Pathways. The project will draw on existing professional infrastructure from the ALA and the Institute for Learning Innovation’s established community of practice. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project.
The Research
The research team will study the efficacy of each pathway, alone and in tandem, on participant’s interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews, and case studies. The results should yield a model for nationwide application and contribute insights for the formal education sector.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Lainie Castle
resourceprojectWebsites, Mobile Apps, and Online Media
The intent of this five-year project is to design, deliver, and study professional development for Informal Science Learning (ISL) educators in the arena of equity-focused STEAM (Science, Technology, Engineering, Art, and Mathematics) teaching and learning. While the strategy of integrating art and science to promote interest, identity, and other STEM-related learning has grown in recent years, this domain is still nascent with respect to a guiding set of best practices. Through prior work, the team has developed and implemented a set of design principles that incorporate effective practices for broadening participation of girls in science via science-art integration on the topic of the biology, chemistry and optics of "Colors in Nature." The continued initiative would impact the ISL field by providing a mechanism for ISL educators in museums, libraries and after-school programs to adopt and implement these STEAM design principles into their work. The team will lead long-term (12-18 months) professional development activities for ISL educators, including: 1) in-person workshops that leverage their four previously developed kits; 2) online, asynchronous learning activities featuring interactive instructional videos around their STEAM design principles; 3) synchronous sessions to debrief content and foster communities of practice; and 4) guided design work around the development or redesign of STEAM activities. In the first four years of the project, the team will work with four core institutional partners (Sitka Sound Science Center, Sno-Isle Libraries, the Fairbanks North Star Borough School District after-school program, and the Pima County Public Library system) across three states (Alaska, Washington, and Arizona). In the project's later stages, they will disseminate their learning tools to a broad, national audience. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The project has three main goals: (1) To support ISL educators in offering meaningful STEAM activities, (2) To create institutional change among the partner organizations, and (3) To advance the ISL field with respect to professional development and designing for STEAM Programming. The research questions associated with the professional development activities address the ways in which change occurs and focus on all three levels: individual, institutional, and the ISL field. The methods are qualitative and quantitative, including videotaped observations, pre and post interviews, surveys and analysis of online and offline artifacts. In addition, the project evaluation will assess the implementation of the project's professional development model for effectiveness. Methods will include observations, interviews, surveys and Website analytics and program data.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Indianapolis: City as a Living Laboratory (NSF Grant #DRL-1323117) examines how different public art mediums can serve as conduits for informal science learning at a city-wide scale.
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.