The Addressing Gender Barriers in STEM through Theatre of Social Engagement project responds to the need to educate the public about the careers in computer and information science and engineering (CISE) fields by educating high school students, parents, teachers and counselors about the barriers to participation that confront women and other underrepresented groups. In this Communicating Research to Public Audiences (CRPA) project, a dramatic play is used to communicate the findings from the PI's work which resulted in a theory about gender and IT to explain and predict gender (under)representation in IT fields. The play dramatizes constructs of the theory, particularly the ways in which gender, ethnicity, and class affect identity and career and life decisions. Drawing from life history interviews conducted as a part of the research, the storyline of the dramatic play centers on three young women who are graduating from high school and making decisions about their futures and possible careers in IT. Situated squarely in the realm and literature of "theatre of social engagement," this play, and its staged readings and ancillary website, extend access beyond the scientific community to new scientific research on gender barriers in CISE. Learning goals for the project include: 1. Awareness and knowledge about possible computer and information science and engineering careers; barriers and stereotypes that affect CISE career choice among women; and "significant others" such as partners, family members, mentors and teachers who can make a difference at key inflection points in career decision making. 2. Attitude change about the CISE fields being open to everyone regardless of gender, ethnicity, race or class; how one's individual characteristics can be used to resist barriers to inclusion in CISE careers. 3. Intended behavior about learning more about CISE careers and educational opportunities; and responding to negative stereotypes related to CISE. Evaluation of the proposed project will include observations, talk-back sessions (focus groups) after readings of the play, pre-post surveys administered at the showings, and a second post-performance survey to be administered a certain amount of time after the showing. Dissemination will be through readings of the play for audiences in New Jersey and Pennsylvania, with partnering informal learning venues, and through an associated website which will allow visitors to download and stage the play themselves. Advertisement for the play and the website will take place through websites such as Facebook, Twitter, and websites that promote diversity in computing. In addition, the PI intends to contribute to the scholarly literature on theatre as an informal learning approach and on the findings of how audiences respond to the play itself.
FETCH with Ruff Ruffman, produced by WGBH, is a daily half-hour PBS television series with accompanying Web and outreach activities targeted to 6- to 10-year olds. The program brings science learning to young children by uniquely blending live-action with animation, game show convention with reality programming, and humor with academics. The intended impacts of this new season are to 1) help the target audience, especially girls and minorities, develop an interest, knowledge and skills necessary to do science; 2) help kids develop the math skills and knowledge necessary to solve science and engineering problems; and 3) bring FETCH's unique brand of informal science learning to camps across the country. The requested funds will allow the project to expand the science curriculum with 20 new half-hour episodes and expand the Web site, focusing on three new science themes that highlight topics of interest to this age group: "Animal Universe," "Science of Art," and "Adventure Science." The Web site will include four new science-based Web games that will allow kids to create and post content of their own design and interact with other FETCH fans online. In addition, funds will support new educational resources for camps, including a Camp FETCH Guide. The project will continue to work with the project's established collaborators like the Boys and Girls Clubs, Girl Scouts of America, and YMCA, as well expand the outreach via new partnerships with the Center for Summer Learning at Johns Hopkins University and the American Camp Association. Christine Andrews Paulsen & Associates (CAPA) will conduct summative evaluation of both the television show and the Camp FETCH Guide.
ONE, TWO, THREE...INFINITY: The World of Mathematics is a series of eight one-hour films about math in the real world. It will be produced by WQED/Pittsburgh for prime-time broadcast on the 340 PBS stations and in many foreign countries. The goal of the series is not to "teach" math but to show, in an entertaining fashion, the importance of math in many walks of life--music, art, engineering and communications, to name a few. Math affects our lives everyday in ways many of us have never imagined. Yet few of us ever stop to think about it, perhaps because of "Math anxiety." This series will be the first to reveal math's importance not only as a tool for discovery, but also as a major cultural force. Drawing on WQED's proven skill in creating special visual effects, and making liberal use of magic and mystery, puzzles, and paradoxes, the series will break down the public's fears and misconceptions about math. We hope viewers--children as well as adults--will come away with a new appreciation of mathematics and, most important, a more open attitude toward learning about it--the first step toward a higher level of math literacy. WQED's Producers and cinematographers bring many years of experience on such award- -winning programs as PLANET EARTH, THE INFINITE VOYAGE and the NATIONAL GEOGRAPHIC SPECIALS. A diverse and distinguished advisory committee will help shape the series and ensure its accuracy. And a companion book, together with a program of educational materials and activities, will extend its reach beyond the television audience, making the series a potent catalyst for learning.
The MIT Media Laboratory, in collaboration with six museums, will develop the "Playful Invention and Exploration (PIE) Network," with the goal of engaging a broader audience in science inquiry and engineering by enabling more people to create, invent and explore with new digital technologies. PIE museums will integrate the latest MIT technologies and educational research into their ongoing public programs. The museums will organize MindFest events, modeled after a two-day event at MIT in 1999, at which youth, educators, artists, engineers, hobbyists and researchers came together to collaborate on invention projects. The PIE Network will disseminate PIE ideas and activities to educators and families nationally.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskBakhtiar MikhakMike PetrichKaren Wilkinson
The Independence Seaport Museum will create "Boat Building: Art and Science," a 3,000-square foot permanent exhibit that is designed to educate visitors about the science of boat building and design. Concepts such as buoyancy, water displacement, turbulence and drag will be explored through interactives, maritime artifacts, models and oral histories of tradesmen. By using the principles identified by the Family Science Learning Research Project of the Philadelphia/Camden Informal Science Education Collaborative (PISEC), the exhibit will be user-friendly for families with young children. Visitor workstation topics may include boat building, floating, buoyancy, sails, wind and boat shape. Visitors will use science processes while learning through open-ended play and exploration. Creative programs for families and school groups, as well as curriculum materials will support the exhibit. A website and technical training manual will also be produced. Four phases of evaluation are planned, and include front-end analysis which will incorporate focus groups with children ages 7-12, and formative evaluation using prototypes of interactives. Remedial evaluation will be carried out once the exhibit opens, and summative evaluation will use tracking and exit interviews to assess learning and understanding. The estimated annual audience of over 130,000 visitors will be expanded by replicating and traveling various components to other maritime museums in partnership with the Association of Science and Technology Centers. Evaluation of traveling components will also be undertaken to determine if they present an appropriate model for maritime-based exhibits.
Nationally, there is tremendous interest in enhancing participation in science, technology, engineering, and mathematics (STEM). Providing rich opportunities for engagement in science and engineering practices may be key to developing a much larger cadre of young people who grow up interested in and pursue future STEM education and career options. One particularly powerful way to engage children in such exploration and playful experimentation may be through learning experiences that call for tinkering with real objects and tools to make and remake things. Tinkering is an important target for research and educational practice for at least two reasons: (1) tinkering experiences are frequently social, involving children interacting with educators and family members who can support STEM-relevant tinkering in various ways and (2) tinkering is more open-ended than many other kinds of building experiences (e.g., puzzles, making a model airplane), because it is the participants' own unique questions and objectives that guide the activity. Thus, tinkering provides a highly accessible point of entry into early STEM learning for children and families who do not all share the same backgrounds, circumstances, interests, and expertise. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The project will take place in the Tinkering Lab exhibit at Chicago Children's Museum. The research will investigate how reflective interactions between parents and children (ages 6-8) during tinkering activities ultimately impact child engagement in STEM. Design-based research (DBR) is well-suited to the iterative and contextually-rich process of tinkering. Using a DBR approach, researchers and museum facilitators will be trained to prompt variations of simple reflection strategies at different time points between family members as a way to strengthen children's engagement with, and memory of these shared tinkering events. Through progressive refinement, each cycle of testing will lead to new hypotheses that can be tested in the subsequent round of observations. The operationalization of study constructs and their measurement will come organically from families' activities in the Tinkering Lab and will be developed in consultation with members of the advisory board. Data collection strategies will include observation and interviews; a series of coding schemes will be used to make sense of the data. The research will result in theoretical and practical understanding of ways to enhance STEM engagement and learning by young children and their families through tinkering. A diverse group of at least 350 children and their families will be involved. The project will provide much needed empirical results on how to promote STEM engagement and learning in informal science education settings. It will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children. This research is being conducted through a partnership between researchers at Loyola University of Chicago and Northwestern University and museum staff and educators at the Chicago Children's Museum.
Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities, creating an unprecedented opportunity to engage a wide range of participants in mathematics that is both purposeful and powerful. To date, this opportunity has been almost universally unexploited. The conference, which will take place at and in collaboration with the New York Hall of Science, will gather fifty researchers and practitioners from informal mathematics education and the burgeoning "making and tinkering" movement for two days to collaboratively generate approaches to integrating mathematics in making and design environments and programs. The project, which includes pre- and post-conference activities, will produce a sampler of Math in Making activities, a guidebook, a white paper for research and practice, a retrospective online discussion, and further dissemination of project deliverables. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Through the conference and pre- and post-conference activities, the project team will: - Initiate and sustain conversations between researchers and practitioners; - Establish collaborations that lead to changes in the way math is framed and highlighted in making and design environments; - Create resources to help people in the making/design community highlight the math in their environments; and - Frame a research agenda to guide studies of mathematical reasoning and attitudes towards math in making and design environments. The work includes an extensive evaluation process of the conference and of pre- and post-conference activities.
The investigators address a major educational challenge by introducing a novel format and content for science education, (a) building on past successes; (b) combining development and dissemination at a new level; and (c) centered around an interactive planetarium show aimed to inform the public on an emerging scientific discipline and medical field: Tissue Engineering. For achieving a multitude of goals, the investigators propose the establishment of a unique partnership in scientific and medical education, bringing together university researchers, clinical leaders, science center experts, and students, educators and community representatives at all levels. The project is catalyzed by the Pittsburgh Tissue Engineering Initiative, a non-profit organization dedicated to the promotion of tissue engineering and its application to improving people's lives. The main goals fall in three categories, as follows: Education: - To communicate scientific information about the human body (principles of function will be emphasized over specific facts or terminology by focusing on a limited but fundamental set). -To convey the excitement and importance of tissue engineering research. The show will utilize engaging interactive demonstrations of tissue functions and illustrate the medical uses and potential of this field. Innovation: - To enhance the educational experience. The developers will use group-interactive technology as a tool for education by engaging participants as participants in the processing functions of the body. A special visualization/interactivity laboratory will be used where prototype interactive scenarios will be tested using focus groups, consultants and representatives of the target audiences. Dissemination: - To insure national distribution to other planetaria. The presentation system will utilize portable interactive technology (to be developed). It will be deployed to planetaria throughout the country, coordinated by the Association of Science and Techology Centers (ASTC). - To engage the target audience in the development process. Content development will be achieved by a consortium of leading research universities and medical centers, with input from a panel of worldclass experts. Visualization, interactivity and sound technologies will be developed in Pittsburgh, in a unique collaboration between the arts and sciences, based on past successes. Evaluation activities will be extensive, as will the range and targets of the spin-off educational materials. The Carnegie Science Center planetarium itself will serve in achieving group immersive visualization, akin to virtual reality, for improving target audience involvement. The expected outcome is a new way of delivering educational content, and a better understanding of the emerging field of tissue engineering by the general public.
The Maker Movement has taken the educational field by storm due to its perceived potential as a driver of creativity, excitement, and innovation (Honey & Kanter, 2013; Martinez & Stager, 2013). Making is promoted as advancing entrepreneurship, developing science, technology, engineering, and mathematics (STEM) workforce, and supporting compelling inquiry-based learning experiences for young people. In this paper, we focus on making as an educative inquiry-based practice, and specifically tinkering as a branch of making that emphasizes creative, improvisational problem solving. STEM-rich
The World Biotech Tour (WBT) is a multi-year initiative that will bring biotechnology to life at select science centers and museums worldwide. The program, supported by the Association of Science-Technology Centers (ASTC) and Biogen Foundation, is scheduled to run from 2015-2017, with the 2015 cohort in Belgium, Japan, and Portugal. The WBT will increase the impact and visibility of biotechnology among youth and the general public through hands-on and discussion-led learning opportunities. Applications are now open for the 2016 cohort! Learn more and submit an application at http://www.worldbiotechtour.org/become-a-stop
DATE:
-
TEAM MEMBERS:
Association of Science-Technology CentersCarlin Hsueh
The Art and Science of Acoustic Recording was a collaborative project between the Royal College of Music and the Science Museum that saw an historic orchestral recording from 1913 re-enacted by musicians, researchers and sound engineers at the Royal College of Music (RCM) in 2014. The original recording was an early attempt to capture the sound of a large orchestra without re-scoring or substituting instruments and represents a step towards phonographic realism. Using replicated recording technology, media and techniques of the period, the re-enactment recorded two movements of Beethoven’s
DATE:
TEAM MEMBERS:
Aleks KolkowskiDuncan MillerAmy Blier-Carruthers
Educators from K-12 and higher education are collaborating on a new school of the future projects involving humanoid robots and other forms of robots and student and teacher productivity tools. We are working in the areas of STEAM Plus. (science, technology, engineering, visual and performing arts, mathematics, computer languages and foreign languages) All team members will share their action research results through a traveling exhibition to all twelve public libraries in the city of Long Beach, California. Kids Talk Radio through its Backpack Science, Journalism, and Backpack Robotics programs will create video and audio podcasts of the action research and share findings over the Internet with schools, libraries and museums around the world.
DATE:
-
TEAM MEMBERS:
Super School SoftwareBob BarbozaWalter Martinez