This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.
The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.
This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.
Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
The goal of the project is to advance understanding of basic questions about learning and teaching through the development of a theory of embodied mathematical cognition that can apply to a broad range of people, settings and activities. The investigative team brings together expertise from a range of quantitative and qualitative research methodologies. A theory of embodied mathematical cognition empirically rooted in classroom learning and workplace practices will broaden the range of activities and emerging technologies that count as mathematical, and help educators to envision alternative forms of bodily engagement with mathematical problems.
DATE:
-
TEAM MEMBERS:
Ricardo NemirovskyRogers HallMartha AlibaliMitchell NathanKevin Leander
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).
The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).
There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
The Adler Planetarium, Johns Hopkins University, and Southern Illinois University-Edwardsville are investigating the potential of online citizen science projects to broaden the pool of volunteers who participate in analysis and investigation of digital data and to deepen volunteers' engagement in scientific inquiry. The Investigating Audience Engagement with Citizen Science project is administering surveys and conducting case studies to identify factors that lead volunteers to engage in the astronomy-focused Galaxy Zoo project and its Zooniverse extensions. The project is (1) identifying volunteers' motivations for joining and staying involved, (2) determining factors that influence volunteers' movement from lower to higher levels of involvement, and (3) designing features that influence volunteer involvement. The project's research findings will help informal science educators and scientists refine existing citizen science programs and develop new ones that maximize volunteer engagement, improve the user experience, and build a more scientifically literate public.
DATE:
-
TEAM MEMBERS:
Karen CarneyMichael RaddickPamela Gay
The Astronomical Society of the Pacific, in collaboration with the Institute for Learning Innovation, will implement "Sharing the Universe." This research and implementation project is designed to include both a comprehensive, two-phased research component, as well as a large-scale national dissemination. The intended impacts are to improve the quality and effectiveness of informal science education activities provided by amateur astronomers; increase the frequency of public engagements in astronomy; and broaden the variety of events and diversity of the outreach to include underserved and underrepresented audiences. The project will create a community of practice using club leaders to improve astronomy clubs nationwide through research tools, training and outreach skills. Project deliverables include Phase I research which is designed to gain an understanding of how outreach-orientated clubs function and identify strategies that make successful clubs effective. Phase II will examine a core group of 20 clubs in detail to further understand the outreach culture while using interventions developed from the Phase I results such as a training DVD, Online Resource Library, Outreach Toolkit and a robust community of practice. The final deliverable will be the dissemination of proven strategies and best practices revealed by the research to 200 diverse astronomy clubs across the country. Strategic impact will be realized in increased outreach capacity among amateur astronomers and a strong model for astronomy clubs with proven best practices and resources. It is anticipated this project will reach more than 4,400 amateur astronomers and indirectly impact more than one million Americans in astronomy clubs in four years. Inverness Research will conduct the summative evaluation of the project.
Taking NPASS (National Partnerships for Afterschool Science) to Scale builds on a previously funded effort (DRL 0515549) designed to provide professional development for out-of-school time (OST) science trainers, administrators, and frontline staff in collaboration with the California School-Age Consortium, the Georgia Afterschool Investment Council, The After-School Institute, Minnesota School Age Child Care Alliance, University of Missouri-Columbia, University of New Hampshire, and the Ohio Child Care Resource and Referral Association. Rutgers University-New Brunswick. The primary target audiences for this project are OST science trainers, administrators of statewide OST networks and frontline staff as well as youth participating in afterschool programs, most of whom are from traditionally underserved and economically challenged groups. Deliverables include three-day, semi-annual train-the-trainer institutes; annual seminars for NPASS leaders; professional development tools; science kits; and the NPASS website. The project design consists of four levels of management and delivery. At Level 1, the NPASS2 primary partners, EDC and the Boston Children's Museum, provide three-day state-based OST Science Trainer Institutes on a semi-annual basis. The Science Trainer Institutes combine hands-on experience with pedagogical training in informal science learning, youth development, and the logistics of working with OST sites. During Level 2, the eight State Leadership Teams recruit two cohorts of OST practitioners to attend Science Trainer Institutes. The new Science Trainers then identify OST sites to attend a series of half-day science trainings in Level 3. Each session introduces and models new science projects for use in afterschool settings, including the NSF-funded Design It! or Explore It! materials. Finally, at Level 4, OST sites serving children from predominantly underserved and underrepresented populations are invited to join the NPASS2 initiative. OST sites receive a materials kit and guide for the activities at each training session. It is estimated that as many as 10 OST state leaders and 100 science trainers will be reached at 750 community sites serving 22,000 youth. The combined intervention has the potential to change the OST landscape. The project evaluation to be conducted by the Goodman Research Group (GRG) employs a longitudinal design to determine participants' growth over time and the magnitude of change among the variables. The formative evaluation is designed to assess the development of the project's deliverables while the summative evaluation focuses on professional audience impacts. The NPASS2 summative evaluation examines the OST science trainers, OST state network administrators, youth workers, and site administrators through a baseline survey, in addition to annual questionnaires and interviews of network administrators and OST site administrators. The pre-post design measures changes in trainers' understanding, attitudes, behavior, and skills related to informal STEM education research or practice. To maximize the efficiency and authenticity of the evaluation, GRG will use the SET/STEM Leader Competencies Rubric currently being developed jointly by EDC in collaboration with the National 4-H Council\'s SET PD Committee.
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
Climate Change Education produced climate change educational experiences for both professional and general public audiences. In particular, the Science Museum of Minnesota (SMM), in collaboration with NASA Goddard Institute for Space Studies (GISS), University of Minnesota’s Institute on the Environment, and the University of Wisconsin’s Cooperative Institute for Meteorological Satellite Studies (CIMSS), developed new content for SMM’s Earth Buzz online network, developed a climate change educational program for middle and high school teachers, invited audiences of policy- and decision-makers to SMM for climate change discussions, and recruited and mentored a climate change team of high school students through SMM’s Kitty Andersen Youth Science Center. The project goals were to increase the awareness and understanding in target audiences that (1) human activities are now surpass natural processes as driving forces of atmospheric change, (2) the behavior of Earth's atmosphere in the 21st Century will be increasingly determined by humans, and (3) human ingenuity is the key to adapting to and mitigating the climate changes underway. Highlights of the project included organizing and hosting the October 26-28, 2011 City of Saint Paul Climate Change Adaptation Scenario Planning Workshop, which catalyzed climate resilience as a city planning priority, organizing and hosting with Morris A. Ward, Inc. the October 5-6, 2012 Climate Change Science for Minnesota Broadcast Meteorologists workshop which brought together local TV and radio meteorologists with some of the best climate scientists in the U.S., helping to organize and host on November 7, 2013 the State of Minnesota’s first conference devoted exclusively to climate change adaptation, and the adoption by the museum of a public statement on climate change (www.smm.org/climatechange). The project endures although the grant has concluded through the continued delivery of the museum’s Climate Changed outreach program to a wide array of audiences and through the museum’s continued involvement with the many partnerships established during the Climate Change Education project, as exemplified by the museum working with the City of Saint Paul and Macalester College on an upcoming St. Paul Neighborhood Climate Adaptation Workshop and a Worldwide Views on Climate and Energy event (climateandenergy.wwviews.org/).
Earth to Sky (ETS) is an exciting, growing partnership between the National Aeronautics and Space Administration (NASA), the National Park Service (NPS) the US Fish and Wildlife Service (USFWS), and the University of California, Berkeley. Together we work to enable and encourage informal educators to access and use relevant NASA and other science, data, and educational products in their work. The project is co-lead by NASA Earth Science Education, in partnership with NPS, USFWS and U.C. Berkeley. Earth to Sky has been funded by a series of NASA grants and the Earth Science Division of NASA's Science Mission Directorate. Mission Statement: Actively foster collaborative work between the science and interpretation/education communities of NPS, USFWS and NASA, to ultimately enrich the experiences of millions of visitors to America’s National Parks, Refuges and other protected areas. There are two, closely linked components to ETS: Professional Development, and an active Community of Practice. We use a collaborative approach to interagency professional development, bringing scientists and educators together in collegial learning environments. Our training events emphasize development of plans for use of course content in participants’ work environment. We provide face-to-face, distance-learning and blended learning opportunities. Since 2008 the effort has focused on climate change science and communication. However, we maintain connections with other science content areas, including comparative planetology and the Sun-Earth connection. We have also developed, and continue to nurture and expand, a community of practice that uses the science and communication skills and capabilities of each of the partners to enrich public engagement in natural and cultural heritage sites across the United States. Impact: 86 course participants from a total of 3 ETS courses have in turn reached well over 4 million visitors to parks and refuges with content derived from ETS professional development. Archives of almost all ETS presentations and examples of participants’ work are available to registered members of our website http://www.earthtosky.org Registration is free and open to anyone with an interest in science communication. We also maintain a listserv of nearly 500 individuals, which provides periodic updates on science, professional development opportunities and other news of relevance to the community.
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE:
-
TEAM MEMBERS:
Stephen MadigoskyWilliam KeilbaughVictor DonnayBruce GrantThomas Schrand