Iteration is a central practice in art and science; however, it has yet to be deeply explored in STEAM learning environments. This study adopts a sociomaterial orientation (Fenwick and Edwards, 2013) to characterize the nature of iteration in one STEAM activity, an Optics Design Challenge, with informal educators. We found that iteration emerged as “microcycles” of interactions, specifically as adjustments, additions, and negotiations in both material artifacts and the narrative.
The integration of Art with Science, Technology, Engineering, and Mathematics (STEAM) has been growing in popularity, however, there are a variety of conceptualizations of what it looks like. This study explores images of STEAM by examining activities created by informal educators. We found that STEAM activities were conceptualized as using one discipline in the service of another, intertwined, or parallel. This provides concrete images of what STEAM can look like in educational settings.
DATE:
TEAM MEMBERS:
Blakely TsurusakiLaura ConnerCarrie TzouPerrin Teal SullivanMareca GuthriePriya Pugh
Over the last year we have been able to take a few hours each week to step back from our current work, reflect on our assumptions, learn from others, and explore new ways that our research could both uncover and help dismantle inequities and racism in the STEM education system. This eBook, and the series of blog posts on which it is based, is the result of these conversations and this reflective process. Our goal is to explore the themes and ideas that emerged from the year and how these might fundamentally change the way we think about STEM, work with families and children, and conduct
Children’s and parents’ spatial language use (e.g., talk about shapes, sizes and locations) supports children’s spatial skill development. Families use spatial language during playful construction activities. Spatial language use varies with construction activity design characteristics, such as the activity’s play goals. What is the connection between the building materials used and the spatial conversations families have during a construction activity?
DATE:
TEAM MEMBERS:
Evan VlahandreasClaire MasonNaomi PolinskyDavid UttalCatherine Haden
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. Digital storytelling, in which narratives and reflections are combined with photos and videos in order to be shared with an audience, has become a familiar, enjoyable activity for many children (Robin, 2008). We examine whether digital storytelling activities during tinkering and reflection will be related to
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. We examine whether digital storytelling activities during tinkering and reflection will be related to more engineering talk.We also explore whether children with previous digital storytelling experience will produce higher quality narratives than children without.
How to determine a sample size for studying your informal learning program
What’s important to consider when selecting a sample size, or participant group size, for studying your informal (science) education program? What value does a small sample size have? If program managers have ample resources for collecting a lot of data, what factors are important to consider?
Here is a collection of guidelines and examples for use in making an informed decision about determining the sample size for studying your informal learning program. To design a study whose findings are more authentic
In this chapter, I offer the National Black Male College Achievement Study (NBMCAS) as an example of how to explore and better understand the enablers of minority student achievement in STEM. Methods employed in the national study are described in the next section, followed by the presentation of an anti-deficit achievement framework for research on students of color at various junctures of the STEM pipeline, from K–12 schools through doctoral degree attainment and transitions into science research and long-term industry careers. Though informed by and conceptually similar to the framework
The goal of our project is to develop strategies that effectively engage autistic adolescents in informal STEM learning opportunities that promote the self-efficacy and interest in STEM careers that will empower them to seek out career opportunities in STEM fields.
The research aims are to:
1. Identify evidence-based strategies to engage autistic youth in informal STEM learning opportunities that are well matched to their attentional profiles:
Hypothesis 1: Pedagogical strategies vary in how engaging they are for people with diverse attentional profiles; people with more focused
This project aims to formally define what a sense of belonging means in the science & natural history museum context as a way to measure inclusivity efforts. We think that most of the experiences that make up a museum visit have a relatively neutral effect on visitor sense of belonging. However, visitors may experience moments that make them feel distinctly positive or negative, and these moments that matter may influence a visitor’s STEM engagement, interest, and/or identity.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Our project focuses on iterative improvements to a cardboard-focused maker exhibition to engage more families in engineering practices.
This poster was presented at the 2021 NSF AISL Awardee Meeting.