Skip to main content

Community Repository Search Results

resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.

The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE: -
TEAM MEMBERS: Shuchi Grover Marie Bienkowski John Stamper
resource project Media and Technology
Purpose: This project will develop and test Kiko's Thinking Time, a series of game apps designed to strengthen children's cognitive skills related to executive functioning and reasoning. A principle objective of preschool is to prepare children for later success in school. Most programs focus on activities to support children's social and emotional development, and to strengthen pre-reading and mathematics competencies. Fewer programs explicitly focus on fostering children's executive function and reasoning skills—even though research in the cognitive sciences demonstrates these skills also provide a foundation for school-readiness.

Project Activities: During Phase I (completed in 2014), the team developed six prototype games and a teacher portal to track student progress. At the end of Phase I, results from a pilot study with 55 kindergarten students and 5 teachers demonstrated that the games operated as intended. Results indicated that students were engaged based on duration of game play, and that teachers were able to review game data for each child. In Phase II, the team will develop 15 more games and will further refine and enhance the functionality of the teacher portal. After development is complete, a pilot study will assess the feasibility and usability, fidelity of implementation, and the promise of the games for promoting students' executive functioning and reasoning. The researchers will collect data from 200 students in 10 preschool classrooms over 2 months. Half of the students in each class will be randomly assigned to use Kiko's Thinking Time while the other half will play an art-focused gaming app. Analyses will compare pre-and-post scores on measures of student's executive functioning and reasoning.

Product: Kiko's Thinking Time will be an app with 25 games, each based on tasks shown to have cognitive benefits in lab research. Each game will be designed to isolate and train skills related to executive functioning, such as: working memory, reasoning, inhibition, selective attention, cognitive flexibility, and spatial skills. Game play will be self-guided and adaptive, as the software will adjust in difficulty based on student responses. The app will work on tablets, smartphones, as well desktops. In addition, a companion website will allow teachers to track student performance and to obtain educational material around executive function and cognitive development.
DATE: -
TEAM MEMBERS: Grace Wardhana
resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
Purpose: Purpose: This project team will fully develop and test Teachley Connect, a platform that syncs a variety of third-party math games to give elementary schools formative assessment data and intervention support. Mobile math games provide opportunities for students to access educationally-meaningful content in and out of the classroom and to supplement instruction. There are a number of examples of math apps that show promise for supporting and assessing student learning in different areas of mathematics, yet few apps in the marketplace provide meaningful data that teachers can use. Many games provide an overall score at the end of the session, but do not help teachers know what skills students are struggling with or how to provide additional support.

Project Activities: During Phase I, (completed in 2015), the team developed a prototype of Teachley Connect, which enables the secure transfer of game and learning data between third-party math games and the Teachley servers. At the end of Phase I, researchers completed a pilot study with 20 students and two teachers and demonstrated that the prototype operated as intended with important trends indicating that the system promotes student engagement and less time spent seeking help. In Phase II, the team will add additional third party math apps to the platform, strengthen the backend management system to tag user game-play data, and build out the teacher reporting dashboard to inform instruction and identify apps to address particular student and class needs. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Teachley Connect for teachers to use formative assessment data to inform classroom practice, select apps to address individual student needs, and support student math learning. The study will include 12 (grade K to 3) classrooms and randomly assign them into one of three groups: 1) apps only, 2) Teachley-enabled apps, or 3) Teachley-enabled apps + data. Researchers will compare pre-and-post scores of student's math learning, classroom observations, and teacher surveys/interviews.

Product: Teachley Connect will be a mobile tablet-based platform that uses games to give elementary schools rich formative assessment data and intervention support. Teachley Connect will permit students to continue playing exactly where they left off on any tablet. The platform will also connect apps into a single teacher dashboard, providing teachers detailed reports on student performance across games, with insights for informing individual or whole group instruction. The platform will include teacher resources to support the alignment of game play with learning goals and to support implementation.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
The connections between technology applications of all sorts and human users that are ubiquitous in informal learning and assume a great deal about how the technology is used and how learning takes place. Much of the research in this area has been focused on game design and interaction. This project will examine this interaction involving the use of gestures that represent how individuals work with systems and large data sets that represent complex systems like the oceans, to understand how basic elements of a project with a 3-D type of design might enhance the user experience and increase the utility and learning that takes place by understanding the cognitive elements of these game like interactions in specific STEM related settings like museums.

This exploratory pathways project will investigate the use of interactive, gesture-enabled, multi-touch spheres for teaching about ocean systems in science centers and museums. The gesture-enabled aspect of the project will improve on interactive table-top installations which can frustrate users who use unexpected gestures and receive no response leading to brief interaction and abandonment without significant interaction or learning. The project will investigate ways in which unsupported gestures would still produce a system response which would encourage the user to remain at the installation and continue to investigate. The effect of multiple gestures will be supported by using natural mappings between gestures and interactions with the on-sphere data.

The project investigates theories of embodied cognition that support the notion that by engaging with global-scale datasets on a spherical display more effectively models the earth in a non-distorted manner and therefore will be more natural and allow users to develop a more accurate conceptual model of how data relates to itself and the globe. In this way, the project shares some aspects of understanding about learning through game play. The sphere will not be a fully developed game but will share characteristics of game play.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Katie Stofer Lisa Anthony Peter Chang Alice Darrow Annie Luc Hannah Neff Alex Popeil Carrie Schuman Nikita Soni Betty Dunckel John Baek Bilge Mutlu Amanda Morales Jeremy Alexandre Brittani Kirkland
resource research Media and Technology
With support from the National Science Foundation’s Science Learning+ initiative, Twin Cities Public Television (TPT), in St. Paul, MN, in collaboration with a team of researchers in the US and the UK organized a workshop with the title Affinity Spaces for Informal Science Learning: Developing a Research Agenda. Our goal was to develop and refine a set of concepts and issues that will guide future investigations into how participation in online affinity spaces can promote and enable informal science learning. The workshop took place on July 6th and 7th, 2015, ahead of the Games+Learning
DATE:
resource research Media and Technology
STEM Pathways is a collaboration between five Minnesota informal STEM (science, technology, engineering, and mathematics) education organizations—The Bakken Museum, Bell Museum of Natural History, Minnesota Zoo, STARBASE Minnesota, and The Works Museum—working with Minneapolis Public Schools (MPS) and advised by the Minnesota Department of Education. STEM Pathways (logo shown in Figure 1) aims to provide a deliberate and connected series of meaningful in-school and out-of-school STEM learning experiences to strengthen outcomes for students, build the foundation for a local ecosystem of STEM
DATE:
TEAM MEMBERS: Steven Walvig Beth Murphy Melanie Peters Abby Moore
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Nationally, the US has a shortage of computer scientists; a big part of this problem is that girls are discouraged from learning computer science at a very young age. This project tries to address this problem by creating a videogame specifically oriented towards getting middle school girls interested in learning computer science concepts outside traditional programming classes. Based on evidence that stories provide a compelling way to present complicated technical subjects and that girls in particular respond to technology careers as a way to help others, the project is building a videogame called "Gram's House" in which social workers intend to move a fictional grandmother to a retirement home unless the player can outfit her home with sufficient technology for her to remain independent. Solving puzzles in the game requires learning core computer science concepts. Research studies will be conducted to determine whether the videogame is effective at getting girls interested in computer science, at teaching computer science concepts, and whether using stories makes videogames more effective for learning. This project based on an earlier successful prototype uses an iterative research-based design process including paper prototyping, playtesting, and focus groups (N=20) to create age appropriate activities, based on the CS Unplugged series, that support learning concepts from the Data, Internet, Algorithms, and Abstraction sections of the high-school level CS Principles curriculum. A quantitative, quasi-experimental design will be used to determine the overall effectiveness of teaching CS concepts under three types of game conditions: (a) games alone, (b) games with fictional settings, and (c) games with stories. A novel assessment instrument will be developed to assess content learning and qualitative observation using a standard observation protocol will be used to gauge interest and engagement. 70-80 middle school girls will be recruited for afterschool participation in the study in two states. As part of the dissemination efforts, a facilitator's guide, rule book, and materials such as maps and storyboards will be created and shared with the game. In addition, a workshop for computer science and other teachers who are interested in using games to teach CS concepts will be conducted.
DATE: -
TEAM MEMBERS: Elisabeth Gee Carolee Stewart-Gardiner
resource project Media and Technology
Living Liquid is a full-scale development project that will develop and research a new genre of science exhibit that engage visitors in inquiry with large scientific datasets through interactive visualizations. Building on findings from a prior pathways project, Living Liquid will develop three interactive visualizations on a multi-touch Viz Table with a tangible user interface. Each visualization will support visitors in the exploration of a dataset provided by the project’s science partners: 1) Plankton Patterns will show how the ocean is defined by regions of microscopic life using data from the MIT Darwin Project; 2) Ocean Tracks will reveal the “highways” large marine creatures travel with data from the TOPP project at Stanford University; and 3) Genetic Rhythms will follow the activity of marine creatures’ genes in response to environmental conditions based on data from the Center for Microbial Oceanography Research and Education (C-MORE). Through an iterative process of collaborative research and development among museum professionals, educational researchers, computer scientists, marine biologists, data artists and interaction designers, this project seeks to: (1) Advance public understanding of ocean ecosystems and large data inquiry skills through the development of a Viz Table. (2) Advance STEM professionals’ knowledge of how to engage the public in inquiry with visualizations through an educational research study. (3) Increase the capacity of STEM professionals (both ISE developers and research scientists) to develop visualizations through a collaborative development process that includes graduate student training and residencies.
DATE: -
TEAM MEMBERS: Jennifer Frazier Joyce Ma Kwan-Liu Ma
resource project Media and Technology
Brigham Young University and the University of Maryland, in partnership with the Smithsonian Institution, the Computer History Museum, and NASA, plus leading game designers, educators, scientists, and researchers, will conduct research on the design and development of two large-scale Alternate Reality Games (ARGs) based on deep-time science in astrobiology, astrophysics, and interplanetary space travel. The project will iteratively design and test two distinct types of ARGs (closed- and open-ended) to study the effects of these ARGs on STEM learning. The ARGs will be based upon the Next Generation Science Standards (NGSS), affording learners with intensive, self-driven, and scaffolded scientific learning and will be aimed at attracting girls and other groups historically underrepresented in science and technology. Each ARG will be designed by NASA scientists, educators and education researchers, and game-based learning experts and will be highly interactive: engaging learners in collaborative investigations in real and virtual worlds to collect scientific data, conduct data analysis, and contribute scientific evidence that will help solve scientific questions within a science-based narrative derived from real world problems that will develop learners' computational thinking skills in a collaborative, participatory virtual learning environment. Combining data from web and social media analytics, player interviews, surveys, and user-generated content, researchers, and evaluation experts at UXR who will provide an outcomes-based evaluation, including front-end, formative, remedial, and summative evaluations, will establish the properties of ARGs that most effectively advance informal STEM learning outcomes. By comparing open-ended and closed-ended ARGs, the PIs will be able to assess the relative strengths and weaknesses of two distinct approaches to Alternate Reality Game design. The project team will test the hypothesis that open-ended, user-generated content will support inquiry-based learning, peer-to-peer learning, and life-wide and life-deep learning, while close-ended, narrative-rich ARGs will support specific transfer of STEM knowledge, collaboration, and problem solving. To help ensure that the games appeal to their target audiences, the project team will adopt co-design methods, enlisting the creative input of participating teens at each stage of the design process. Supplementary materials and lesson plans developed in close consultation with teachers, librarians, teens, and external stakeholders will enable the ARGs to be widely and effectively used as a model in museums, classrooms, libraries, and after-school programs. The proposed ARGs represent a unique environment to test learning principles that enable players to bridge their learning through transmedia across multiple contexts and test the effects of collaboration with massive numbers of concurrent players. As a result, the project should yield insights on how learning principles can be adopted and re-appropriated for emerging learning environments, including those that that might be crowd-sourced. The research is well grounded in the literature and the PIs do an excellent job of mapping ARG design principles to the pertinent learning science research, providing a clear sense of the particular affordances of the genre that should lead to new understandings. The approach has profound implications for the way we might teach the next generation of students. The ability to mix problem solving and learning in virtual spaces with experiences and data derived from the physical world could dramatically change how we understand the role of technology in education.
DATE: -
TEAM MEMBERS: Derek Hansen Steven Shumway June Ahn Elizabeth Bonsignore Kari Kraus