The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
Global changes such as urbanisation, new ways of travelling, new information and communication technologies are causing radical changes in the relationships between human beings and the environment we are both a part of and depend on. Relationships which – according to a multiplicity of researches in various fields – are crucially important. Science education and the language of science risk exacerbating a tendency towards objectifying nature and inhabiting a virtual reality, thereby rendering ever more tenuous the dialogue between people and the natural world. This article examines two
DATE:
TEAM MEMBERS:
Martin DodmanElena CaminoGiuseppe Barbiero
Global changes such as urbanisation, new ways of travelling, new information and communication technologies are causing radical changes in the relationships between human beings and the environment we are both a part of and depend on. Relationships which – according to a multiplicity of researches in various fields – are crucially important. Science education and the language of science risk exacerbating a tendency towards objectifying nature and inhabiting a virtual reality, thereby rendering ever more tenuous the dialogue between people and the natural world. This article examines two
DATE:
TEAM MEMBERS:
Martin DodmanElena CaminoGiuseppe Barbiero
What is the meaning of “dialogue” in education? Why is dialogue important in learning processes? Tran proposes a short review of the literature, starting with Vygotsky and ending with a new field of research in informal learning - conversations among the public visiting museums as a collaborative environment for learning.
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
This is a handout from a session presented at the 2008 ASTC Conference. Advances in neuroscience are revealing biological pathways underlying emotion, attention, and memory. How can this research be integrated with educational pedagogy to enhance free-choice learning? Join experts from neuroscience, education, and museums to explore practical ways in which new insights about the brain can be applied to creating museum experiences.
Today we have access to an almost inconceivably vast amount of information, from sources that are increasingly portable, accessible, and interactive. The Internet and the explosion of digital media content have made more information available from more sources to more people than at any other time in human history. This brings an infinite number of opportunities for learning, social connection, and entertainment. But at the same time, the origin of information, its quality, and its veracity are often difficult to assess. This volume addresses the issue of credibility—the objective and
Young people's use of digital media may result in various innovations and unexpected outcomes, from the use of videogame technologies to create films to the effect of home digital media on family life. This volume examines the core issues that arise when digital media use results in unintended learning experiences and unanticipated social encounters. The contributors examine the complex mix of emergent practices and developments online and elsewhere that empower young users to function as drivers of technological change, recognizing that these new technologies are embedded in larger social
It may have been true once that (as the famous cartoon of the 1990s put it) "Nobody knows you're a dog on the Internet," and that (as an MCI commercial of that era declared) on the Internet there is no race, gender, or infirmity, but today, with the development of web cams, digital photography, cell phone cameras, streaming video, and social networking sites, this notion seems quaintly idealistic. This volume takes up issues of race and ethnicity in the new digital media landscape. The contributors address this topic—still difficult to engage honestly, clearly, empathetically, and with
As young people today grow up in a world saturated with digital media, how does it affect their sense of self and others? As they define and redefine their identities through engagements with technology, what are the implications for their experiences as learners, citizens, consumers, and family and community members? This volume addresses the consequences of digital media use for young people’s individual and social identities. The contributors explore how young people use digital media to share ideas and creativity and to participate in networks that are small and large, local and global
When we think of mobility in technical terms, we think of topics such as bandwidth, resource management, location, and wireless networks. When we think of mobility in social or cultural terms, a different set of topics come into view: pilgrimage and religious practice, globalization and economic disparities, migration and cultural identity, daily commutes and the suburbanization of cities. In this paper, we examine the links between these two aspects of mobility. Drawing on non-technological examples of cultural encounters with space, we argue that mobile information technologies do not just