The summative evaluation of the Farming for Fuels classroom program and family event was conducted over two years. Two interim reports were delivered with preliminary results about specific areas of focus. This final report described the overall evaluation study methods and results, and made recommendations for potential revisions and improvements to the program. The evaluator worked with the program team at the Creative Discovery Museum to generate a list of questions to guide the evaluation study. The questions covered each of the major audiences for the program: museum educators, teachers
What effects do different setups of museum exhibits have on visitors' conversations and interactions? The study reported here is an investigation of the role that labels and associated materials play in visitors' conversations and interactions at a heat camera exhibit. After we introduced a label to help visitors explore the insulating properties of clothing, we found a dramatic shift in the kinds of activities and participation structures of visitors. Not only were visitors, as expected, discussing why clothing was warm, but they were doing so in a fashion more consistent with formal
DATE:
TEAM MEMBERS:
Leslie AtkinsLisanne VelezDavid GoudyKevin Dunbar
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
In this article, the author expresses her views on how science technology, engineering, and mathematics (STEM) standards can be developed to upgrade lifelong science learning. She mentions that the International Conference in the Learning Sciences (ICLS) that will be conducted by the International Society for the Learning Sciences (ISLS) will have an advantage to the development of the STEM standards. She also comments on the establishment of cyberlearning environments to improve science education.
The author reflects on the use of some media channels to disseminate information about astronomy. He states that there is a striking absence of regularly maintained blogs hosted by major astronomical institutions. He asserts that social networking sites offer a quick and efficient channel for dissemination of content to a younger audience. He offers information on Second Life, the most popular non-game-based virtual community.
Many adolescents develop ideas about and attitudes toward engineering through their exposure to out-of-school representations of science and technology. Yet few studies have investigated the nature of these representations and found ways to use them in formal engineering learning. This article explores media representations of science and technology that today's adolescents are familiar with. It analyzes how the embedded representations compare with those found in academic engineering and examines how these representations influence students' knowledge of and dispositions toward engineering
The article discusses how STEM (Science, Technology, Engineering, and Mathematics) education resources can be implemented in to public libraries and services for teenagers. The author notes that with an increased importance placed on STEM subjects, it is important for librarians to consider resources and programs for students beyond what they typically offer. The article lists suggested ways librarians can integrate STEM into public library work, including introducing STEM resources to students when visiting schools, promoting STEM programs to parents and educators, and creating STEM booklists
The article discusses ways racial and ethnic minorities are excluded from science, technology, engineering and math (STEM) fields. According to the article, the lack of minority STEM professionals in industries is blamed on their less rigorous early educational experience, lack of mentors and difficult work environment. Library staff can help alleviate many of these disadvantages through teacher education and thoughtful programming for students in a professional environment.
The article discusses the Helen M. Marshall Children's Library Discovery Center in Jamaica, New York. The resource center is designed to encourage science learning, reflect the cultural aspects of Queens, New York, and allow students to engage in science experiments. Exhibits mentioned in the article include bug observations, color mixing, and using touch sensors to identify objects. Other topics discussed by the author include incorporating STEM (Science, Technology, Engineering and Math) education, library outreach programs, and teenagers on the library staff.
The article discusses how STEM (Science, Technology, Engineering, and Math) education will affect the work of teen librarians and the Young Adult Library Services Association (YALSA). According to the article, YALSA created a STEM task force whose objectives include developing a list of recommended reading related to STEM, compiling STEM resources online, and creating a "STEM in Libraries" toolkit.
The article examines how school library programs are uniquely suited to initiate innovative thinking on how to leverage resources such as science fiction to help young people see the value of science, technology, engineering, and mathematics (STEM) in their daily lives. The authors report on the Sci-Dentity project launched in January 2012 which involves the collaboration between researchers and librarians at the University of Maryland in designing ways to incorporate sci-fi to STEM.
DATE:
TEAM MEMBERS:
Mega SubramaniamAmanda WaughJune AhnAllison Druin
The article discusses strategies for public libraries to offer programs and resources for science, technology, engineering, and mathematics (STEM) education and activity programs. The author comments on how public libraries can partner with businesses to offer STEM resources to library patrons and strengthen the role public libraries play in terms of education in their communities. Topics include the possibility of public libraries learning from science fairs to incorporate displays and nonfiction book lists that promote science, as well as strategies to organize nonfiction book holdings.