Context
Engaging youth as partners in academic research projects offers many benefits for the youth and the research team. However, it is not always clear to researchers how to engage youth effectively to optimize the experience and maximize the impact.
Objective
This article provides practical recommendations to help researchers engage youth in meaningful ways in academic research, from initial planning to project completion. These general recommendations can be applied to all types of research methodologies, from community action-based research to highly technical designs.
DATE:
TEAM MEMBERS:
Lisa HawkeJacqueline RelihanJoshua MillerEmma McCannJessica RongKarleigh DarnaySamantha DochertyGloria ChaimJoanna Henderson
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.
PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.
Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.
Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.
Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:
develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.
This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.
A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.
The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE:
-
TEAM MEMBERS:
Adam MarcusTheresa Gillespie
resourceresearchWebsites, Mobile Apps, and Online Media
Background: Some STEM outreach programs connect students to real-world problems and challenge them to work towards solutions. Research shows one-third of children between ages 5-17 in the U.S. are overweight. Socioeconomic status, race, and parental educational attainment all influence this issue as well as living in a rural or urban area. A rural high school STEM outreach program used a social media curriculum focused on healthy lifestyles and measured impact on the health of adolescents from these backgrounds.
Methods: Health screenings and college mentors were provided to 134
DATE:
TEAM MEMBERS:
Ann ChesterSara HanksSummer KuhnFloyd JonesTravis WhiteMisty HarrisBethany Hornbeck Sherron McKendallMary McMillionCathy MortonMallory SlusserR. Kyle Saunders
resourceevaluationMuseum and Science Center Programs
The Museum of Science, Boston’s Research and Evaluation Department conducted a summative evaluation of The Hall of Human Life (HHL) exhibition. This 9,700 square foot exhibition is geared towards older children and adults. It is focused on human biology and human health with the main message, “Human beings are changing in a changing environment.” Visitors are able to use their own bodies and behaviors to understand biological mechanisms. Unique to this exhibition, visitors are able to use scannable wristbands to record and compare personal data with other Museum visitors to learn about their
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.
The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE:
-
TEAM MEMBERS:
DeeDee BennettLori PeekTerri NortonHans Louis-Charles
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.
This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
Dr. Ann Chester, Director of the Health Sciences and Technology Academy (HSTA) in West Virginia was looking for professional researchers interested in working with HSTA's high school-aged participants through community-based participatory research (CBPR) projects. Dr. Alicia Zbehlik, with the Dartmouth Institute for Health Policy & Clinical Practice in New Hampshire, needed to further her research in knee osteoarthritis to support a pilot intervention in her target population. The two met, saw potential benefits to both organizations in forming a partnership, and agreed to undertake a one-year
DATE:
TEAM MEMBERS:
Paul Luis SicilianoBethany L. HornbeckSara HanksSummer L. KuhnAlicia J. ZbehlikAnn L. Chester
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS:
Aaron Matthew KyleMichael CarapezzaChristine Kovich
resourceresearchGames, Simulations, and Interactives
We describe a game and teachers’ experiences using it in their middle and high school science courses. The game, which is called “Luck of the Draw,” was designed to engage middle, high school, and college students in genetics and encourage critical thinking about issues, such as genetic engineering. We introduced the game to high school science teachers attending a summer workshop and asked them to describe their initial impressions of the game and how they might use it in their classes; later, during the academic year, we asked them whether they used the game in their classrooms and, if so
DATE:
TEAM MEMBERS:
Alicia BowerKami L. TsaiCarey S. RyanRebecca AndersonAndrew JametonMaurice Godfrey
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of Making have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. WestEd, in collaboration with the Lucile Packard Children's Hospital, the University of Michigan C. S. Mott Hospital Children's Hospital, and the Children's Hospital of Orange County, is conducting a year-long exploratory research study that will focus on the out-of-school learning by adolescents and young adults in children's hospitals. This research study will focus on mobile and dedicated Makerspaces in hospitals to support patients' learning. The application of Makerspaces to hospital environments is a unique opportunity to research a critical need of chronically ill individuals, i.e. to explore how Making can enhance patients' agency, creative STEM learning, and physical well-being. The proposed study is building on the prior work of the principal investigator and will: (1) examine the nature and processes of learning in children's hospitals; (2) revise the current design of the mobile Makerspace and the associated implementation model in response to variations in programmatic contexts across multiple hospital settings and disparate patients' conditions; and (3) investigate and test the effectiveness of the Makerspace approach as it relates to both patients' learning and health outcomes. The study would contribute to longer-term efforts to develop a comprehensive, scalable, and sustainable strategy to determine the programmatic viability of the mobile Makerspace approach across a more varied array of hospital settings. This project has the potential to have a much broader impact by reaching out to other isolated students beyond the hospital environment, including those in residential treatment facilities for behavioral and emotional problems, as well as those attending programs designed to help youth who have been in trouble with the law get back on track. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project's goals are to contribute to the understanding of how to: (1) describe and measure the education and health impact of mobile Makerspaces on chronically ill patients, and (2) design and sustain implementation models in various hospital settings. Since a children's hospital is a challenging context to support a patient's learning, it is not typically conducive to learning. Patients are constantly interrupted by the demands of the illness, by the strict protocols that need to be adhered to, and by the medical staff who manage their exhaustive treatment regimens. The mobile Makerspace is intended to adjust the environment in deliberate ways, allowing researchers to study and observe what kinds of learning intervention models enable youth and young adults to recapture a sense of their own agency and enable them to see themselves as creators, and makers of things that improve their own and others' lives. The project will have two strands: one on learning and one on adaptation of the model. In the learning strand, the study will investigate how engaging with the Makerspace can enhance patients' learning by provoking their sense of curiosity, encouraging them to set up and pursue personal goals via invention, and inspiring them to feel more agentive in taking charge of their learning process i.e., development of affinity for and fluency in the ways of knowing, doing and being (the epistemologies and ontologies) of engineers or scientists. In the adaptation strand, they will identify challenges and opportunities for implementing Makerspaces and develop an implementation plan that provides a process for introducing Makerspaces into hospital settings.