The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.
This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
Investigators from the MIT Media Lab will develop and study a new generation of the Scratch programming platform, designed to help young people learn to think creatively, reason systematically, and work collaboratively -- essential skills for success in the 21st century. With Scratch, young people (ages 8 and up) can program their own interactive stories, games, animations, and simulations, then share their creations with others online. Young people around the world have already shared more than 1 million projects on the Scratch community website (http://scratch.mit.edu). The new generation, called Scratch 2.0, will be fully integrated into the Internet, so that young people can more seamlessly share and collaborate on projects, access online data, and program interactions with social media. The research is divided into two strands: (1) Technological infrastructure for creative collaboration. With Scratch 2.0, people will be able to design and program new types of web-based interactions and services. For example, they will be able to program interactions with social-media websites (such as Facebook), create visualizations with online data, and program their own collaborative applications. (2) Design experiments for creative collaboration. As the team develops Scratch 2.0, they will run online experiments to study how their design decisions influence the ways in which people collaborate on creative projects, as well as their attitudes towards collaboration. This work builds on a previous NSF grant (ITR-0325828) that supported the development of Scratch. Since its public launch in 2007, Scratch has become a vibrant online community, in which young people program and share interactive stories, games, animations, and simulations - and, in the process, learn important computational concepts and strategies for designing, problem solving, and collaborating. Each day, members of the Scratch community upload nearly 1500 new Scratch projects to the website - on average, a new project almost every minute. In developing Scratch 2.0, the team will focus on two questions from the NSF Program Solicitation: (1) Will the research lead to the development of new technologies to support human creativity? (2) Will the research lead to innovative educational approaches in computer science, science, or engineering that reward creativity? Intellectual Merit: The intellectual merit of the project is based on its study of how new technologies can foster creativity and collaboration. The investigators will conduct design experiments to examine how new features of Scratch 2.0 engage young people in new forms of creative expression, collaboration, learning, and metadesign. Young people are already interacting with many cloud-based services (such as YouTube and Facebook). But Scratch 2.0 is fundamentally different in that it aims to engage people in programming their own projects and activities in the cloud. With Scratch 2.0, young people won?t just interact with the cloud, they will create in the cloud. The goal is to democratize the development of cloud-based activities, so that everyone can become an active contributor to the cloud, not just a consumer of cloud-based services. This development and study of Scratch 2.0 will lead to new insights into strategies for engaging young people in activities that cultivate collaboration and creativity. Broader Impacts: The broader impact of the project is based on its ability to broaden participation in programming and computer science. The current version of Scratch has already helped attract a broader diversity of students to computer science compared to other programming platforms. The investigators expect that the collaboration and social-media features of Scratch 2.0 will resonate with the interests of today's youth and further broaden participation. Integration of Scratch into the introductory computer science course at Harvard led to a sharp reduction in the number of students dropping the course, and an increase in the retention of female students. There have been similar results in pre-college courses. The National Center for Women & Information Technology (NCWIT) calls Scratch a ?promising practice? for increasing gender diversity in IT.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskJohn Maloney
For the purpose of clarity and consistency, the term e-learning is used throughout the paper to refer to technology-enhanced learning and information technology (IT) in teaching and learning. IT depicts computing and other IT resources. Research into e-learning has changed in focus and breadth over the last four decades as a consequence of changing technologies, and changes in educational policies and practices. Although increasing numbers of young people have access to a wide range of IT technologies during their leisure activities, little is known about this impact on their learning. Much of
To better help museum visitors make sense of large data sets, also called “Big Data”, this study focused on the types of visual representations visitors recognize, and how they make meaning (or not) of various visuals. Individual adults and youths were shown five different data visualizations (one from each of five categories), one at a time, and asked if the visualization looked familiar and how it was read. This study found that Context and previous experience matters. Participants of all ages are familiar with a wide variety of visual displays of data. If a participant encounters a visual
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
The Cyberlearning Resource Center (CRC) has responsibility for promoting integrative collaboration among cyberlearning grantees (across NSF programs); synthesis and national dissemination of cyberlearning findings, technologies, models, materials, and best practices; creating a national presence for Cyberlearning; helping the disparate Cyberlearning research and development communities coordinate efforts to build capacity; and providing infrastructure (technological and social) for supporting these efforts. Monitored through the Cyberlearning: Transforming Education program, the CRC serves as a resource for all NSF grantees and programs with cyberlearning components, helping to promote synergy and integrate projects across NSF's cyberlearning investments. Among society's central challenges are amplifying, expanding, and transforming opportunities people have for learning and more effectively drawing in, motivating, and engaging young learners. Engaging actively as a citizen and productively in the workforce requires understanding a broad variety of concepts and possessing the ability to collaborate, learn, solve problems, and make decisions. Whether learning is facilitated in school or out of school, and whether learners are youngsters or adults, to develop such knowledge and capabilities, learners must be motivated to learn, actively engage over the long term in learning activities, and put forth sustained cognitive and social effort. Consistent with NSF's mission and strategic plan, a variety of programs at NSF invest in research aimed towards achieving these goals. In support of this important thematic thrust, the Cyberlearning Resource Center works with researchers and NSF program officers to identify and disseminate findings from across programs and projects; develop ways to broker productive partnerships and collaborations; convene meetings for purposes of envisioning the future, integrating findings, and building capacity,; and monitor the cyberlearning portfolio and its influences and impacts.
Fields and Enyedy studied how two students who learned computer programming in an OST program leveraged their skills in the classroom to broker positions as experts in the classroom community. Expert identity is reinforced by the interactions among what students do, how they see themselves, and how others see them.
Informal Community Science Investigators (iCSI) creates a network of four geographically diverse informal science institutions working together on strategies to engage youth ages 10-13 through location based augmented reality (AR) games played on smartphones. These high-interest, kid-friendly games will be used by families visiting the institutions and by youth who enroll in more intensive summer camp programs. Using AR games, participants will engage in playful but scientifically-grounded investigations drawing on each institution's research, exhibits, and natural spaces. For example, a botanical garden might engage young visitors through AR games with themes related to native and invasive species, while a zoo might create a game experience focusing on illegal wildlife trade. Participants in the iCSI summer camp program will have more intensive experiences, including work with the host institution's scientists, opportunities to develop original augmented reality games, and experiences with game-related service learning and citizen science programs. For both target groups (families and campers), the location specific games build understanding of both the institution's mission and the broader realm of scientific research and application. The project will test the notion of participants as "learner hero," the link between game play and the individual's development of competency, autonomy and the relationship to real world experience, in this case through community action on the subject of the game developed. To that end, participants will be encouraged to extend their involvement through related investigations on site and participation in community activities and projects that can be done at home. Social media tools such as Facebook and web sites managed by the host institutions will provide recognition for this extended engagement, helping participants maintain ties to the program. Additionally, program resources provide assistance to adult family members in nurturing and sustaining youth interest in STEM activities and careers. A major effort of the project will be development of a new software infrastructure called TaleBlazer for the augmented reality game that will enable teachers and students to develop their own game that incorporates real data collection and scientific model building. The new platform will enhance the game play platform MITAR developed with NSF funding.
Millions of children visit virtual worlds every day. In such virtual play spaces as Habbo Hotel, Toontown, and Whyville, kids chat with friends from school, meet new people, construct avatars, and earn and spend virtual currency. In Connected Play, Yasmin Kafai and Deborah Fields investigate what happens when kids play in virtual worlds, how this matters for their offline lives, and what this means for the design of educational opportunities in digital worlds. Play is fundamentally important for kids’ development, but, Kafai and Fields argue, to understand play in virtual worlds, we need to
Interactive technologies are employed in museums to enhance the visitors' experience and help them learn in more authentic ways. Great amounts of time and money and many man-hours of hard work have been spent. But do such systems indeed achieve their goals? Do they contribute to a greater user experience (UX) and learning effectiveness? In this paper we describe the use of the "Walls of Nicosia" a 3D multi-touch table installed at the Leventis Municipal Museum in Nicosia, Cyprus. Two groups of students actively participated in this empirical study (they attended the 5th year class at
DATE:
TEAM MEMBERS:
Panagiotis ZahariasDespina MichaelYiorgos Chrysanthou
Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning
DATE:
TEAM MEMBERS:
Annetta LeonardWendy FrazierElizabeth FoltaShawn HolmesRichard LambMeng-Tzu Cheng