The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
National Science Foundation (NSF) awarded an Informal Science Education (ISE) grant, since renamed Advancing Informal STEM Learning (AISL) to a group of institutions led by two of the University of California, Davis’s centers: the Tahoe Environmental Research Center (TERC) and the W.M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES). Additional partner institutions were the ECHO Lake Aquarium and Science Center (ECHO), Lawrence Hall of Science (LHS) at the University of California, Berkeley, and Audience Viewpoints Consulting (AVC). The summative evaluation study was
The connections between technology applications of all sorts and human users that are ubiquitous in informal learning and assume a great deal about how the technology is used and how learning takes place. Much of the research in this area has been focused on game design and interaction. This project will examine this interaction involving the use of gestures that represent how individuals work with systems and large data sets that represent complex systems like the oceans, to understand how basic elements of a project with a 3-D type of design might enhance the user experience and increase the utility and learning that takes place by understanding the cognitive elements of these game like interactions in specific STEM related settings like museums.
This exploratory pathways project will investigate the use of interactive, gesture-enabled, multi-touch spheres for teaching about ocean systems in science centers and museums. The gesture-enabled aspect of the project will improve on interactive table-top installations which can frustrate users who use unexpected gestures and receive no response leading to brief interaction and abandonment without significant interaction or learning. The project will investigate ways in which unsupported gestures would still produce a system response which would encourage the user to remain at the installation and continue to investigate. The effect of multiple gestures will be supported by using natural mappings between gestures and interactions with the on-sphere data.
The project investigates theories of embodied cognition that support the notion that by engaging with global-scale datasets on a spherical display more effectively models the earth in a non-distorted manner and therefore will be more natural and allow users to develop a more accurate conceptual model of how data relates to itself and the globe. In this way, the project shares some aspects of understanding about learning through game play. The sphere will not be a fully developed game but will share characteristics of game play.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE:
-
TEAM MEMBERS:
Corrin BarrosKoh Ming WeiDanko TabrosiEmerson Odango
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The SCIENCES project aims to create a STEM ecosystem in Fuller Park, a chronically, severely under-resourced urban community in Chicago.
The Yellowstone Park Foundation is partnering with Yellowstone National Park (YNP) to develop and build a visitor education center at Old Faithful. Selinda Research Associates (SRA) worked with staff from Yellowstone's Division of Interpretation to plan and conduct a front-end evaluation of the exhibits for the new center. The evaluation was grounded in naturalistic methodology and used a variety of methods to triangulate on park visitors understanding of and reactions to a variety of issues. These methods included in-depth interviews with visitors both before and after their visits and card
In this article, Rita Mukherjee Hoffstadt, Assistant Director for Traveling Exhibits and Special Projects at The Franklin Institute, summarizes the conversations discussed at the American Association of Museums (AAM) awards session for the 23rd Annual Excellence in Exhibition Competition held at the AAM annual conference in Houston, Texas in May 2011. The winners all embraced and managed an element of risk in the process of creating their exhibitions.
Living Liquid will identify strategies for creating visualization tools that can actively engage the public with emerging research about the ocean's microbes and their impact on our planet. It addresses a critical issue for the ISE field: creating ways for visitors to ask and answer their own questions about emerging areas of science with visualizations. This Pathway project will provide important lessons learned for a future full-scale development project at the Exploratorium's new location over San Francisco Bay, and for informal science educators and other professionals working to create interactive visualization tools using the vast data sets now available. Living Liquid is a collaboration between developers, educators and learning researchers at the Exploratorium, computer scientists at the Visualization Interface and Design Innovation Group at UC Davis, and marine scientists at the Center for Microbial Oceanography Research and Education. The project's research and development process includes a front-end study of visitors' interests and prior knowledge related to ocean microbes, interviews with scientists to identify potential datasets and activities, a survey of candidate visualizations, and a series of prototypes to identify promising strategies to engage visitors with and allow visitors to explore large scientific datasets through visualization tools.
This Pathways proposal seeks to find the most effective means for communicating research, research processes and ocean sciences to the public from the ocean ship Joides Resolution (JR). The JR is an NSF-supported research vessel that assists scientists and educators in their quest for understanding the science of oceans and ocean floors worldwide. The goal of this project is to find the best mechanism for communicating science through the numerous platforms of informal science education. Through a series of discussions by stakeholders that include scientists, educators, end-users in the informal science education community and evaluators, 3-5 pilot projects will be selected for further elaboration, testing and evaluation for communication methodologies. From these studies and refinements, models for communication will be produced for further implementation. Partners in this venture include: Consortium for Ocean Leadership\'s Deep Earth Academy (DEA)and the Education Division for the Integrated Ocean Drilling Program (IODP). This project will enhance the public\'s understanding of oceans, ocean floors, and related research in these elements, and inspire younger individuals who may consider ocean science as a career. Models for how best to communicate the world of ocean science will be tested and disseminated through informal science education networks and platforms. Further, models for evaluation of this multidisciplinary science endeavor will be helpful to advancing the informal science education field.
The University of Southern California (USC) will build on prior work to test a robust model for assessing player content engagement and social interactions within an augmented reality game (ARG). In partnership with No Mimes Media, USC will use machine learning algorithms to make automated player inferences to customize game play. The content focus of the game will span a range of STEM disciplines, with a special emphasis on earth science content and scientific investigation & experimentation reasoning. High school youth from underserved communities in Los Angeles will be recruited to participate in the endeavor. This pathways project will use various "rabbit hole" techniques to attract freshmen and sophomore students from partner charter schools to the online game. The rabbit hole strategies may include cryptic posters, inquisitive signs, & SQR codes strategically placed in plain and open view of the target group. The game will be fully accessible to the target group online. During the ARG experience, youth players will encounter STEM concepts and scientific problems. Antagonistic characters will promulgate scientific misconceptions and nonscientific reasoning and challenge players to employ their scientific knowledge and skills to level-up, gain badges, and move through the game. As game play persists, machine learning algorithms will gather data on the players learning competencies and social interactions within the game. These data will be aggregated and analyzed to assess learning and interactions within the ARG environment. Additional analyses will be conducted by the mixed methods approach the external evaluation group, CRESST, will employ for the project formative and summative evaluations. Approximately 300 youth, within the target grade levels, are expected to participate in the gaming experience. However, given that access to the game and assessment tools will expand beyond the target group, the potential reach of the project could be much greater. Further, the stated aim of the project is not only to produce a scalable model for broad implementation but it also endeavors to provide puppetmasters with research and assessment tools to create more individualized experiences and improved learning outcomes for players within ARG environments.
DATE:
-
TEAM MEMBERS:
Yu-Han ChangJihie KimRajiv Maheswaran
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
The Anchorage Museum, in partnership with the Washington State Historical Society and Cook Inlet Historical Society, will fabricate, and present a 7,500-square-foot exhibition on James Cook’s Third Voyage to the Pacific Ocean, titled Arctic Ambitions: Captain Cook and the Northwest Passage. The exhibition will open March 27, 2015 in Anchorage and run until September 11, at which time it will travel to the Washington State Historical Society in Tacoma. The exhibition will be part of the Municipality of Anchorage’s Centennial Celebration. Although Cook spent time in southern seas en route to America, the prime focus of the exhibition will be the Northwest Coast, mainland Alaska, the Aleutian Islands, the Bering Sea, Siberia, Kamchatka, and the Arctic Ocean.