This innovations in development project will develop and study the Wéetespeme Stewardship Program (Wéetespeme: “I am of this land”). Tribal led, the project supports and studies climate science learning experiences grounded in traditional ecological knowledge, culturally relevant pedagogy, and land education pedagogy. Nez Perce high-school youth and college-age adults will choose specific species and places; work with tribal resource management offices to learn to monitor, assess, and mitigate climate impacts; and receive mentorship from tribal elders, as they co-develop climate-science adaptive management plans for local concerns. Adaptive management plans may include topics such as: drought and extreme weather impacts, shifts in animal populations and migration patterns, cultivating traditional foods, and managing important cultural sites. The Tribal research team will collaborate with curriculum developers and Indigenous graduate student(s) from the University of Idaho and Northwest Youth Corps to explore how a STEM curriculum centered on cultural identity and traditional knowledge can align with Indigenous youths’ identities, resource responsibilities, and understanding and interest in STEM career pathways within the Tribe and in the region. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants. This project’s approach to curriculum development, and youths’ identity and career interest development, will contribute to the informal STEM learning field’s nascent understanding of Tribal-driven education efforts, and approaches to blending or bridging traditional ecological knowledge and Western ways of knowing. With co-funding from the Directorate of Geosciences’ (GEO), this project will further advance efforts related to the application of traditional ecological knowledge to the geosciences, including Indigenous workforce development opportunities and research experiences for Indigenous graduate students.
Over a two-year duration, the study will address two research questions. 1) How and in what ways does a culturally relevant out-of-school curriculum support Indigenous youths’ understanding of their own identity, resource responsibility, and possible career pathways, including those on Tribal land? 2) How and in what ways does a culturally relevant out-of-school curriculum develop Indigenous youths’ ability to monitor and address climate change impacts, to protect, preserve and recover land relationships that are central to their cultural identities and values? Thirty-two college-age young adults and high-school youth (sixteen of each age group) will participate in the Wéetespeme Stewardship Program and research study. Indigenous research methodologies will guide the approach to investigating and sharing Indigenous youths’ understanding of their own identity, resource responsibility, possible career pathways, and learning experiences within the Wéetespeme Stewardship Program activities. Two Indigenous graduate students will play a central role in conducting the research, supporting systemic impacts within, and beyond, the Tribe. Methods will be embedded in learners’ experiences and will include field journals, adaptive management plans, story maps, and talk circles. Youth will also participate as research partners: understanding the research questions, assisting with the analysis, contributing to interpretation of the findings, and co-authoring manuscripts that share their stories and this work. The informal STEM curriculum will be shared regionally, allowing for Tribes in the plateau region to benefit from culturally relevant approaches youth engagement to support climate resilience. The results of the research will also be shared more broadly, contributing to the emerging knowledge-base about the ways that cultural practices and values, guided by land education pedagogy and the mentorship of traditional ecological knowledge keepers, and embedded in informal STEM learning experiences, can contribute to Indigenous youths’ identities and understanding of, and investment in, local and meaningful environmental resources and STEM career pathways.
DATE:
-
TEAM MEMBERS:
Nakia WilliamsonKarla Bradley EitelJeff ParkerJosiah Pinkham
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.
This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Zoos and aquariums have been offering programming, events, and visit accommodations to autistic individuals for several years. While these efforts can provide great experiences, they are focused more on accommodation and the outward-facing guest experience than inclusion. Lack of inclusion features in design, programming, and representation amongst zoo and aquarium representatives, ultimately limits full inclusion and adds to a sense in autistic individuals of not belonging and not being welcomed. To develop a fully inclusive experience for autistic individuals, this project will develop an evidence-based framework of inclusive practices for zoos and aquariums and build a community of practice around inclusion broadly. The project brings together researchers from Oregon State University, Vanderbilt Kennedy Center’s Treatment and Research Institute for Autism Spectrum Disorders, and the Association of Zoos and Aquariums. Researchers will create and investigate the extent and ways in which a research-informed framework and associated tools (i.e. case studies, discussion guides, self-guided audits, etc.) and strategies support science learning for autistic individuals, and help practitioners expand access and inclusion of autistic audiences beyond special events or the general visit experience by applying inclusive practices for programs, exhibit development, internships, volunteer opportunities, and employment. To maximize impact, the project will develop and expand a network of early adopters to build a community of practice around inclusive practices to develop fully inclusive zoo and aquarium experiences for all individuals.
The project will investigate 4 research questions: (1) In what ways and to what extent are zoos and aquariums currently addressing access and inclusion for autistic individuals? (2) How do staff in zoos and aquariums perceive their and their institution’s willingness and ability to address access and inclusion for autistic individuals? (3) What is a framework of evidence-based practices across the zoo and aquarium experience that is inclusive for autistic individuals, and what associated tools and strategies are needed to make the framework useful for early adopters? And (4) to what extent and in what ways does a research informed framework with associated tools and strategies engage, support, and enhance an existing community of practitioners already dedicated to addressing autistic audiences and promote inclusive practices at zoos and aquariums for autistic people? The project is designed as two phases: (1) the research and development of a framework of inclusive practices and tools for supporting autistic individuals and (2) expanding a network of early adopters to build a community of practice around inclusive practices and an overall strategy of implementation. The framework will be informed through a state of the field study across the zoo/aquarium field that includes a landscape study and needs assessment as well as a review of literature that synthesizes existing research across disciplines for developing inclusive practices for autistic individuals in zoos and aquariums. The team will also conduct online surveys and focus groups to gather input from various stakeholders including zoo and aquarium employees and practitioners, autistic individuals, and their social groups (e.g., family members, peers, advocacy organizations). The second phase of the study will focus on sharing the framework and tools with practitioners across the zoo/aquarium field for feedback and reflection to develop an overall strategy for broader implementation and expanding the existing network of zoo and aquarium professionals to build a community of practice dedicated to the comprehensive inclusion of autistic individuals across the full zoo and aquarium experience. The results will be disseminated through conference presentations, scholarly publications, online discussion forums, and collaborative partners’ websites. The project represents one of the first of its kind on autistic audiences within the zoo and aquarium context and is the first to look at the full experience of autistic patrons to zoos and aquariums across programs/events, exhibits, volunteering, internship, and employment opportunities. A process evaluation conducted as part of the project will explore how the approach taken in this project may be more broadly applied in understanding and advancing inclusion for other audiences historically underserved or marginalized by zoos and aquariums.
This Research in Service to Practice project is supported by the Advancing Informal STEM Learning (AISL) program.
Among scientists, science communication is an increasingly important area of practice, scholarship, and research, especially with early career scientists. The growing interest in combating widespread disinformation and inaccurate public perception of science has increased demand for training in science communication; however, there is a significant gap in both research and training for scientists from diverse racial and ethnic cultural backgrounds. The project will address this knowledge and research gap by applying intercultural communication theory to the design, development, and testing of a new curriculum that will provide evidence-based methods to make science communication trainings inclusive and intersectional. The curriculum will be designed and evaluated to build capacity among science communication trainers and practitioners. Sixty pre-tenure environmental science faculty of diverse racial and ethnic backgrounds will be trained in strategic science communication skills using cultural perspectives and academic goals in science communication. The project will gather research data in collaboration with the national SciComm Trainers Network. In addition to advancing science communication research, training, and practice, the project will implement a novel, peer-reviewed podcast for broader impact. The project Fellows will be prepared to engage in a wide range of science communication activities throughout their careers and lead related efforts at their home institutions. Following a final workshop to develop culturally responsive guidance for science communication trainers, the project team will share findings to the field to inform future practice and societal impacts from advancing culturally relevant science communication in training programs. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
The project will address two significant gaps in science communication and intercultural communication research. First, despite the recognition that more research about race and ethnicity is needed in science communication, few studies have been conducted. Second, while findings on intercultural communication research are consistent across fields, such as health communication and business communication, the research has yet to examine how well-established theories in this area of study apply to the unique norms and processes of science. Investigators will test a novel theoretical framework grounded in two intercultural communication theories: identity negotiation theory and communication accommodation theory. The project will test the extent to which the professional norms and processes of STEM and academia relate to cultural norms and communication styles of underrepresented racial and ethnic minority scientists, and how these factors influence their science communication efforts. The project will use a mixed methods approach including in-depth interviews and surveys. The results of the study will be used to develop and adapt culturally tailored science communication training for 60 pre-tenure environmental science faculty from underrepresented groups. The results of the project will provide evidence to make science communication training and practice more inclusive and effective. The collaboration with the national SciComm Trainers Network will ensure broad dissemination and professional application of project findings. The project will increase representation of racial and ethnic minority scientists as science communicators, including in environmental news coverage; provide a new peer-reviewed podcast series for public audiences that will introduce listeners to environmental research through a culturally responsive lens; provide tested methods for designing inclusive and effective science communication training curricula; and will inform faculty efforts to incorporate science communication activities as part of career advancement.
This report, prepared for The Jim Henson Company, shares findings of a sub-study investigating the types of support parents and caregivers need when navigating and using the second-screen Splash and Bubbles for Parents app. This study originated from a prior field study finding indicating families would benefit from support around the app since it represents a new kind of digital tool. In partnership with local Public Broadcasting Service (PBS) stations, we provided parents and caregivers more detailed support around the features of the app. Based on survey and interview findings, parents and
The Splash and Bubbles for Parents app is a second-screen digital resource for parents and caregivers to support young children’s learning of ocean science. This report, prepared for The Jim Henson Company, shares findings of a field study conducted to examine the promise of the app in supporting parents’ and caregivers’ behaviors and attitudes toward science and technology; families’ joint engagement with media (adults and children watch and play together); and children’s science learning. Findings indicate that parents and caregivers found the app helpful for supporting their children’s
This paper reports on a new media-based tool designed to develop new knowledge about joint parent-child participation in science talk and practices using a second screen app synced with a television program, called Splash! Ask-Me: Ocean Adventures (Splash!).[1] With funding from the National Science Foundation, Splash! is an app designed to work in conjunction with a marine science-focused television program, Splash and Bubbles, for children 2-8 years old that premiered nationally on PBS Kids in fall of 2016.
The free app includes a variety of "conversation catalysts" tied to the television
This is a poster created for the 2019 annual meeting of the American Geophysical Union. Below is the accepted abstract of the poster:
The Long Term Ecological Research (LTER) network spans 28 sites across North America and beyond. Here we share work from two LTER sites in the northeastern US—the Harvard Forest, MA and the Hubbard Brook Experimental Forest, NH—where boundary organizations have been developing a framework for embedding effective public engagement and knowledge co-production into these long-term studies. Here we share this framework and how it has been developed and applied in
Despite Mexico has coasts in the Pacific and Atlantic oceans, people's connection towards the sea and marine environments is quite poor. Our commentary focuses on Mexico's coral reefs, relevant tropical ecosystems to human and oceanic welfare, and it emerges from the experience of the production of an itinerant coral reefs exhibit in Mexico, committed to the conservation and awareness of this threatened habitat. The UN Decade of Ocean Science for Sustainable Development starts in 2021 and represents an opportunity to increase initiatives for public communication of science on marine and
From a strategic communication perspective, for any communication to be effective, it must be audience-centered, with content and delivery channels that are relevant to its intended target. When trying to reach culturally specific communities or other groups that are not otherwise connected with science research, it is crucial to partner with community members to co-create content through media that is appealing and culturally competent. This commentary considers some examples including storytelling through ‘fotonovelas’ and radio stories, community drama and serious games.
This book chapter describes zoo and aquariums' history of conservation education programming for students and teachers. It showcases several examples of student-teacher-scientist partnerships, including Project TRUE, highlighting the program's success at cultivating sustained interest in science careers among high school youth.
Zoos and aquariums have a long history of providing conservation education to students and teachers. As the conservation work of zoos and aquariums has grown, so have the opportunities to connect students and teachers to the work of these scientists. This chapter
This Smart and Connected Community (SCC) project will partner with two rural communities to develop STEMports, an innovative Science, Technology, Engineering and Mathematics (STEM) learning game for workforce development. The game's activities will take players on localized Augmented Reality (AR) missions to both engage in STEM learning challenges and discover emerging STEM careers in their community, specifically highlighting innovations in the fields of sustainable agriculture and aquaculture, forest products, and renewable energy. Community Advisory Teams (CATs) and co-design teams, including youth, representatives from the targeted emerging STEM economies, and decision-makers will partner with project staff to co-design STEMports that reflect the interests, cultural contexts, and envisioned STEM industries of the future for each community.
The project will: (a) design and pilot an AR game for community STEM workforce development; (b) develop and adapt a community engagement process that optimizes community networking for co-designing the gaming application and online community; and (c) advance a scalable process for wider applications of STEMports. This project is a collaboration between the Maine Mathematics and Science Alliance and the Field Day Lab at the University of Wisconsin-Madison to both build and research the co-designing of a SCC based within an AR environment. The project will contribute knowledge to the informal STEM learning, community development, and education technology fields in four major ways:
Deepening the understanding of how innovative technological tools support rural community STEM knowledge building as well as STEM identity and workforce interest.
Identifying design principles for co-designing the STEMports community related to the technological design process.
Developing social network approaches and analytics to better understand the social dimensions and community connections fostered by the STEMport community.
Understanding how participants' online and offline interactions with individuals and experiences builds networks and knowledge within a SCC.
With the scaling of use by an ever-growing community of players, STEMports will provide a new AR-based genre of public participation in STEM and collective decision making. The research findings will add to the emerging literature on community-wide education, innovative education technologies, informal STEM learning (especially place-based learning and STEM ecosystems), and participatory design research.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.