The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
The concept of One Health emphasizes the connection between human health, the health of animals and the health of the environment – with the goal of improving all health. The One Health approach supports collaborations between physicians, veterinarians, dentists, nurses, ecologists, and other science, health and environmentally-related disciplines. The One Health approach is increasingly important as our population rises, agriculture intensifies, and habitat destruction increases.
The goal of our “One Health” project is to increase adolescents’ understanding of One Health concepts and the importance of One Health collaborations. We will accomplish this by developing and disseminating: (1) Classroom lessons for high school students that are case-based, incorporate hands-on activities, and align with the Next Generation Science Standards, and; (2) Activities for middle and high school students that are suitable for use in a variety of informal (non-school) education settings. During this five-year project we will:
• Collaborate with scientists and life science teachers to develop case-based, hands-on One Health lessons for high school students.
• Develop and use a reliable and valid pre/post assessment to determine the impact of the One Health lessons on student learning.
• Implement a dissemination plan in which we will recruit, train and support a national network of “teacher-presenters” to lead professional development workshops for their peers throughout the US.
• Develop activities that will be used for middle school and high school One Health field trip programs at the University of Rochester’s Life Sciences Learning Center.
• Collaborate with informal educators to create One Health activities to be used in their outreach programs.
This project is significant because it will improve students’ understanding of the One Health approach to promoting the health of people, animals, and the environment. This project will also significantly impact teachers’ awareness of One Health, and how One Health concepts are aligned with NGSS and can be incorporated into their existing curriculums. This project is innovative because it will develop One Health lessons and activities for use in a variety of settings, through partnerships with scientists, science teachers, and informal science educators. This project will also feature an innovative model for disseminating the One Health lessons to teachers nationwide using peer-to-peer professional development.
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.
This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Robert PowellMarc SternBrandon Frensley
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.
Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This collaborative project will facilitate rural community education on climate impacts. The Carnegie Natural History Museum and the University of Pittsburgh will work together to form a network of interested community members in Mercer County and Powdermill Nature Reserve in western Pennsylvania to explore the impacts of climate and how its effect could be mitigated or accommodated. The project is has three related ideas: (1) museums hold valuable resources for understanding environmental change, (2) museums are not serving rural audiences well, and (3) complex socio-scientific environmental topics are deeply connected to social decision making in rural communities. This project will bring an inclusive approach to the discussion of socio-scientific issues in rural Western PA, through building relationships between local public audiences, STEM professionals, and informal learning specialists, creating opportunities for co-development of resources and building organizational capacity. The overarching goals of the project are to explore how museums can better serve rural stakeholders and increase the capacity for science-based conversations about human-caused climate impacts.
This project involves a cross-disciplinary team with Carnegie Museum of Natural History providing expertise in interpretation and ecological science, the University of Pittsburgh Center for Learning in Out of School Environments (UPCLOSE) providing expertise in learning research, and rural Hubs centered at Powdermill Nature Reserve (PNR) and the Mercer County Conservation District providing expertise in environmental education, conservation, and engagement with rural communities. The Hubs will coordinate professional development workshops, collaborative design sessions, and community gatherings to bring local stakeholders together to examine and adapt existing resources, including environmental science data and climate education tools, to local issues. These activities will be structured through a Research Practice Partnership. Each will have its own unique mix of geography, demographics, resources, and challenges.
The Research questions are: 1. How can the project effectively support the creation of socially safe spaces for rural Western PA communities to have science-based discussions around climate impacts? 2. How does work with rural partners influence the development of the museum's Center for Climate Studies and its mission to offer programs designed to support public engagement?
3. In what ways have museums been able to support learning about climate topics in rural communities? Data will be gathered from interviews and case studies. There will be two longitudinal studies of local network change and museum change. A survey will also be done to assess the impact of the project on the public. Protocols will be developed in collaboration with the Hubs.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Lauren GiarrataniNicole HellerKevin Crowley
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Research in Service to Practice project examines how informal place-based collaborative learning can support local communities' planning processes related to current environmental changes. As a part of this study workshops will be conducted in 8 communities that have a range of planning mandates based on recent extreme environmental changes such as drought/wildfires, flooding, invasive species, or loss of native wildlife. Place-based adaptation workshops will be designed to be locally relevant and empower people to learn and act on their newly acquired understandings. Local community collective actions may include a range of decisions (e.g., infrastructure changes such as building defenses against sea level rise in coastal communities or improving the quality of roads to withstand higher temperatures.) Collective action may also lead to community wide behavioral changes such as individuals using less water or farmers planting different crops. The study will focus on the efficacy of the methods used in 8 workshops in communities throughout the country. Research objectives include: 1) identifying experts' belief about the most critical components of successful workshops; 2) Understanding of prior workshop outcomes and 3) test hypothesized effective practices and understand how learning takes place and collective action does or does not take place. The project addresses key AISL solicitation priorities including strategic impact on the field of informal STEM learning, advancing collaboration, and building professional capacity. It engages both public and professional audiences as described in the solicitation. Public audiences include stakeholders in each of the 8 communities such as community environmental groups, NGOs, businesses, landowners, and local government planners. Professional audiences include the workshop scientists and facilitators who will be trained in the experimental workshop approach. The project builds upon and expands the existing AISL portfolio of science communication projects such as science cafes, science festivals, science media, and library based projects. This is a collaborative project of EcoAdapt and Virginia Tech with participants from the National Parks Conservation Association, the Desert Research Institute, and the Wildlife Conservation Society and others. The research will progress through two phases. Phase 1 is designed to identify consensus-based effective practices for promoting learning and action in adaptation workshops. It includes a Delphi study to synthesize beliefs about effective practices held by experienced workshop facilitators across the United States. Phase 2 includes iterative design and research of eight adaptation workshops in various communities with a range of planning mandates and recent extreme weather experience. By iteratively revising the workshop design, the study will elucidate how different workshop components influence participant learning, individual behavioral intentions, and subsequent efforts toward collective action. The overall research design will examine the relationships of pedagogical and collaborative techniques to learner outcomes and collective action. Many of these lessons are likely relevant to other collaborative informal science learning contexts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.