Laurel Clark Earth Camp was a set of interconnected programs for Middle and High School students and their teachers that help them develop new perspectives on global change. The project was a partnership of the Arizona-Sonora Desert Museum, Arizona Project WET at the University of Arizona, and the Planetary Science Institute in Tucson, Arizona. Project goals were to: I. Engage students in lifelong learning in STEM disciplines to inform their Earth stewardship practices, career decisions and capacity for innovation; II. Provide teachers with tools and experiences to inspire students to discover the real-world relevancy of STEM disciplines and apply this learning to the pursuit of STEM careers and technological innovation; III. Enhance public awareness of environmental change in the southwestern US and the importance of NASA satellites for recording, understanding and predicting these changes. Over four years, Earth Camp served 132 students and 42 teachers. Program participants understand more about Earth System connectivity and are more aware of their impacts on the environment and how to quantify and reduce these impacts. A post-camp online survey of alumni from previous years indicated that 75% of participants were felt that the camp influenced them to be more interested in STEM careers and 80% were more motivated to do well in their science classes. Teachers in the program were able to implement many of the project activities in their classrooms and most of them were exposed to satellite data for the first time; The project also created a public exhibit “Earth Change from Space” at the Arizona-Sonora Desert Museum, and an online tool that allowed students to explore, research and report on global change issues using Google Earth historical imagery.
NASA STEM Educational Project for the Goddard Greenbelt and Wallops Visitor Center and the Independent Verification and Validation (IV&V) Facility Education Resource Center is a project designed to provide high value STEM education activities. The Goddard Office of Education is fortunate to have three facilities (Greenbelt, WFF and IV&V) that coordinate to produce high impact, sustainable results using NASA’s unique capabilities for their education customers which include visitors, K-16 students, educators and science centers, museums and planetariums. The Greenbelt project elements will take our current Visitor Center in the direction of the Science Education and Exploration Center (SEEC). This project includes utilizing the GeoDome portable planetarium with underserved populations, expanding STEM engagement programs held at the Visitor Center and growing the network of museum partners that implement programs through an experiential workshop held in September 2012. This project also includes support for a summer experience for students and educators for the SEEC held July 2012. The WFF elements of the project include developing educational exhibits and information on NASA’s WFF missions and launches. A presentation on the LADEE orbital moon mission is being developed for the Science on a Sphere. Content is being developed for a kiosk with hands-on exhibits for students that inspire them in STEM fields and based on NASA’s Suborbital and Orbital missions at Wallops Flight Facility. The IV&V elements leverage past NASA and Visitor Center investments, content, and programs. Using the IR camera enables sharing science and engineering information about missions such as the James Webb Space Telescope to a broader audience. IV&V is using the Space Weather kit to train educators and students on space weather forecasting. Having IV&V as a partner allows us to target rural underserved populations with our programs.
Earth from Space highlights state-of-the-art NASA technology, in particular, the suite of Earth observing satellites orbiting our planet, the data they collect, and how people are using these data for research and applications. Participants learn how NASA EOS data is collected through remote sensing systems, recognize the connection between this data and the area in which they live, and recognize the relevance and value of NASA data for understanding changes in the Earth related to where they live. The project informs K–12 students and lifelong learners of our increasingly advanced technological society and prepare students to enter the STEM-related workforce with content in oceanography, geology, climatology, glaciology, geography, and meteorology. Content is presented through hands-on exhibits and dynamic demonstrations using spherical display systems at OMSI’s main museum location and through a travelling program at rural libraries, schools, and other outreach venues throughout Oregon.
This study investigated middle school students’ identity development as learners of science during learning conversations at an informal science education camp. The central research question was: What is the role of conversation in influencing science learner identity development during an informal science education camp? Identity in this study was defined as becoming and being recognized as a certain type of person (Gee, 2001). This study focused particularly on discursive identity, defined as individual traits recognized through discourse with other individuals (Gee, 2005; 2011). The study
Climate Change: NASA’s Eyes on the Arctic is a multi-disciplinary outreach program built around a partnership targeted at k-12 students, teachers and communities. Utilizing the strengths of three main educational outreach institutions in Alaska, the Challenger Learning Center of Alaska partnered with the University of Alaska Museum of the North, the Anchorage Museum and UAF researchers to build a strategic and long lasting partnership between STEM formal and informal education providers to promote STEM literacy and awareness of NASA’s mission. Specific Goals of the project include: 1) Engaging and inspiring the public through presentation of relevant, compelling stories of research and adventure in the Arctic; 2) strengthening the pipeline of k-12 students into STEM careers, particularly those from underserved groups; 3) increasing interest in science among children and their parents; 4) increasing awareness of NASA’s role in climate change research; and 5) strengthening connections between UAF researchers, rural Alaska, and Alaska’s informal science education institutions. Each institution chose communities with whom they had prior relationships and/or made logistical sense. Through discussions analyzing partner strengths, tasks were divided; the Challenger Center taking on the role of k-12 curriculum development, the Museum of the North creating animations with data pulled from UAF research, to be shown on both in-house and traveling spherical display systems and the Anchorage Museum creating table top displays for use in community science nights. Each developed element was used while visiting the identified communities both in the classroom environment and during the community science nights.
The author discusses her experiences in utilizing a sixth-grade Earth science field trip for students as an active research project. She examines a research project assignment conducted on the Sant Ocean Hall at the Smithsonian National Museum of Natural History in Washington, D.C. The author suggests that the use of active research can be applied to any museum or exhibit in the U.S.
The story from the museum may not be read by visitors, who come with their own knowledge and understanding and read a different story in the animals. The visitors read a story which makes sense to them and builds on what they already know and interests them. Increasingly, robotics models are being used in natural history museums, science centers, and zoos to attract visitors and tell some kind of story. What do the visitors actually talk about when looking at such robotic animals? The visitors reported on in this paper were primary school groups and families. Do they talk about similar things
This study examined the effectiveness of worksheets while learning about biodiversity in a natural history museum. Despite the frequent use of worksheets by school classes during out-of-school activities, their effectiveness in enhancing knowledge acquisition has been addressed by relatively few empirical studies. 148 Austrian grammar school students aged eleven to fifteen took part in the pre- and post-test questionnaire study which included a one-hour learning phase with worksheets in the museum. Results indicate a high learning effect from pre- to post-test. Further analyses show that
The study aims to characterize contextual learning during class visits to science and natural history museums. Based on previous studies, we assumed that “outdoor” learning is different from classroom-based learning, and free choice learning in the museums enhances the expression of learning in personal context. We studied about 750 students participating in class visits at four museums, focusing on the levels of choice provided through the activity. The museums were of different sizes, locations, visitor number, and foci. A descriptive-interpretative approach was adopted, with data sources
The article offers tips for early childhood educators on planning and implementing field experiences for young learners in natural history museums. It cites that providing children with access to nature could build their science literacy. Moreover, it emphasizes the importance of intrinsic motivation and recommends that teachers should focus on children's interests and provide them the time to relax. Teachers should also encourage active learning and ensure to make the visit memorable.
The purpose of this study was to describe and understand the range of outcomes of class visits to natural history museums. The theoretical framework is based on the multifaceted process of learning in free choice learning environments, and emphasizes the unique and individual learning experience in museum settings. The study’s significance is in highlighting several possible cognitive as well as non-cognitive learning effects in museums class visits, by providing the student’s point of view. Data was collected by semi-structured interviews with 50 students in grades 6–8 on the day following
This article describes an initial attempt to find out students’ perceptions of class visits to natural history museums, with regard to the museum’s role as a place for intellectual and social experience. The study followed up approximately 500 Grades 6–8 students who visited four museums of different sizes, locations and foci. Data sources included the Museum Constructivist Learning Environment Survey (M-CLES), which was adapted from Constructivist Learning Environment Survey, an open-ended question and semi-structured interviews with 50 students. The three instruments highlighted some