RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
The New England Aquarium will create Conservation STEM — an online curriculum that features engaging videos and hands-on activities aligned with state and national standards that are easily accessible for teachers to use in the classroom. The project responds to a need that the aquarium’s Teacher Advisory Council — composed of Pre-K through 12 teachers from the greater Boston area — identified, which was to help students develop critical and systems thinking skills. It also will provide a means for teachers to engage students with authentic experiences to address real-world problems and build an understanding of the need for a balanced use of the ocean.
The Hollister Herbarium at Tennessee Tech University will implement “Rooting Students in their Botanical History” — an educational module targeted for 11th and 12th grade biology students. The module will address “plant blindness,” a phenomenon defined as the failure to notice or appreciate plants. The herbarium will collaborate with three Tennessee high school biology teachers, a videographer, and a graduate research assistant to increase knowledge, awareness, and appreciation of plants over the three-year project. Students also will get to know herbarium specimens as an essential resource for information about the natural world.
The Fairchild Tropical Botanic Garden will conduct the Million Orchid Project Authentic STEM Initiative to provide inclusive and accessible STEM learning opportunities for approximately 1,800 students annually from the most diverse and under-resourced middle and K-8 schools in Miami–Dade County. The initiative will use the Fairchild's STEMLab — a mobile plant propagation lab designed especially for schoolchildren — to bring the museum’s specialized scientific research to young learners in South Florida neighborhoods. Students and teachers will collect and analyze scientific data, devise research questions, and test hypotheses that will advance local conservation and contribute to the propagation of endangered orchids. Students will have the opportunity to explore STEM careers through interactions with Fairchild botanists.
The Key West Tropical Forest and Botanical Garden will strengthen and expand its “Living Laboratory,” a hands-on outdoor youth environmental education program. New curricula will target students in preschool through 6th grade to expand the reach of the program. Additional programming will serve students in middle school and high school, including facilitating guided research projects for students in the district STEM Fair. Partnerships with local organizations will help to expand inclusive programming for at-risk and economically disadvantaged students and make the program free. They will use student-created videos of their experiments and activities to create multimedia online tutorial resources for educators.
The Arizona-Sonora Desert Museum will partner with the Flowing Wells Unified School District on “We Bee Scientists,” a program to engage students in grades K–6 in real-world science by learning about bees—the most important group of pollinators. They plan to create a curriculum and related activities aligned with the Arizona science standards. The program is an expansion of the Tucson Bee Collaborative, which empowers community scientists from “K to grey” to contribute to ecosystem health and understanding through the study of native bees. The museum also will partner with Pima Community College and the University of Arizona on the program, which will involve volunteers and high school, college, and university students in documenting the abundance and diversity of native bees.
The Dunes Center will provide in-class instruction and field trip activities focused on coastal restoration and community education on water quality for over 300 5th-graders at Guadalupe’s Kermit McKenzie Intermediate School. Through science experiments and hands-on experiences, students will learn how ecosystems function and explore watershed characteristics. Intended to supplement current local science education and reach underserved, rural, Latinx students, the “Explore the Coast” program will help students understand how human actions can affect the environment, promote pollution prevention in the community, and aspire to higher education in the field of science.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
How does a long-lasting, statewide, out-of- school science learning experience influence how key stakeholders think about the value of out-of-school learning and its intersection with in-school learning?
This book chapter describes zoo and aquariums' history of conservation education programming for students and teachers. It showcases several examples of student-teacher-scientist partnerships, including Project TRUE, highlighting the program's success at cultivating sustained interest in science careers among high school youth.
Zoos and aquariums have a long history of providing conservation education to students and teachers. As the conservation work of zoos and aquariums has grown, so have the opportunities to connect students and teachers to the work of these scientists. This chapter
Implementation of a permanent exhibit and supporting programs exploring themes of labor, immigration, and the changing nature of work and community in New Bedford’s commercial fishing industry.
To produce "More Than a Job: Work and Community in New Bedford’s Commercial Fishing Industry," a permanent exhibit, digital exhibits, K-12 curriculum materials, and significant public programming exploring themes of labor and immigration, and the changing nature of work and community in New Bedford's commercial fishing industry.
The U.S. Fish and Wildlife Service estimates that over 41 million people connect to nature through birding. Learning about birds in their natural environments offers opportunities for informal engagement in STEM by a broad range of individuals and groups. Birders often engage in scientific data gathering and analyses, geolocation and remote sensing, and phenology. They also become aware of ecological changes in bird habitats and migratory patterns due to rising temperatures and climate-related events like sea level rise, droughts, fires, and extreme weather. As such, the birding community is an ideal network to better understand and communicate the impacts of climatological changes on bird populations to the public. With this Innovations in Development project, the National Audubon Society will develop a new avian-focused, conservation and climate science community science curriculum for its Nature Centers, and test the effectiveness of the curriculum in educating the public about avian-focused conservation and climatological changes through guided nature experiences. Birding can serve as a pivotal entrée for young people into STEM fields and careers. Through its programs and partnerships, Audubon will leverage its national network to ensure that through this project a more diverse group of voices, particularly young adults and young adults of color, become involved in asking critical questions and developing solutions to address important environmental issues of the future. If successful, the broader impacts of this project on capacity building and public engagement could be far-reaching and long-lasting.
Over the three-year project duration, Audubon will bring educators from its nationwide network of thirty-four Nature Centers (including urban, suburban, and rural sites), together with over 510 young adults (ages 18-25) from its network of college campus chapters. An evidence-based curriculum and community science activities will be created and tested, relying heavily on a team of experts in ornithology, climate science research, STEM curriculum design, diversity, and informal science education. College students will advise on the design of content and activities to effectively interest and engage young adults. These students will be recruited from the new Audubon Campus Chapters Program, which includes 111 college and university campuses, among them, 19 Historically Black Colleges and Universities (HBCUs) and other Minority Serving Institutions (MSIs). The target population will be surveyed to also understand their current and likely participation in guided nature experiences and knowledge base in climate science. Current best practices in guided nature experiences will be gathered from across the Audubon network. The implementation efforts will result in a national STEM model, with train-the-trainer guides and workshops for informal science educators and public engagement opportunities focused on improving the state and condition of avian habitats and communities through climate science research. An external evaluation will be conducted and will include data collection methods such as retrospective pre and post surveys, semi-structured interviews, focus groups, and an embedded assessment to determine impact. The findings will be used to iteratively refine the evidence-based curriculum and measure STEM learning outcomes for the guided nature experience participants. The evaluation will address four areas: (1) fidelity of program implementation to promote accountability; (2) formative evaluation to understand needs and interests of young adults (ages 18-25), and subsequently inform program design; (3) outcomes for Center educators, to inform iterative improvement; and (4) outcomes for program participants, to contribute to the growing knowledge base on effective practices for STEM learning in informal settings.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Loren SmithMark ScallionHeather Starck
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.