Skip to main content

Community Repository Search Results

resource research Museum and Science Center Exhibits
Recent advances in multimodal learning analytics show significant promise for addressing these challenges by combining multi-channel data streams from fully-instrumented exhibit spaces with multimodal machine learning techniques to model patterns in visitor experience data. We describe initial work on the creation of a multimodal learning analytics framework for investigating visitor engagement with a game-based interactive surface exhibit for science museums called Future Worlds.
DATE:
TEAM MEMBERS: Jonathan Rowe Wookhee Min Seung Lee Bradford Mott James Lester
resource research Museum and Science Center Exhibits
Multimodal models often utilize video data to capture learner behavior, but video cameras are not always feasible, or even desirable, to use in museums. To address this issue while still harnessing the predictive capacities of multimodal models, we investigate adversarial discriminative domain adaptation for generating modality-invariant representations of both unimodal and multimodal data captured from museum visitors as they engage with interactive science museum exhibits.
DATE:
TEAM MEMBERS: Nathan Henderson Wookhee Min Andrew Emerson Jonathan Rowe Seung Lee James Minogue James Lester
resource research Museum and Science Center Exhibits
Recent years have seen a growing interest in investigating visitor engagement in science museums with multimodal learning analytics. Visitor engagement is a multidimensional process that unfolds temporally over the course of a museum visit. In this paper, we introduce a multimodal trajectory analysis framework for modeling visitor engagement with an interactive science exhibit for environmental sustainability.
DATE:
TEAM MEMBERS: Andrew Emerson Nathan Henderson Wookhee Min Jonathan Rowe James Minogue James Lester
resource research Museum and Science Center Exhibits
In this paper, we introduce a Bayesian hierarchical modeling framework for predicting learner engagement with Future Worlds, a tabletop science exhibit for environmental sustainability.
DATE:
TEAM MEMBERS: Andrew Emerson Nathan Henderson Jonathan Rowe Wookhee Min Seung Lee James Minogue James Lester
resource evaluation Museum and Science Center Exhibits
This document presents the final evaluation report for the NSF-funded AISL project: "Multimodal Visitor Analytics: Investigating Naturalistic Engagement with Interactive Tabletop Science Exhibits." 
DATE:
TEAM MEMBERS: Cathy Ringstaff
resource research Museum and Science Center Exhibits
Project website for the Future Worlds game-based learning environment for environmental sustainability education in science museums and classrooms. 
DATE:
TEAM MEMBERS: Jonathan Rowe Wookhee Min James Lester
resource research Museum and Science Center Exhibits
In this paper, we investigate bias detection and mitigation techniques to address issues of algorithmic fairness in multimodal models of museum visitor visual attention.
DATE:
TEAM MEMBERS: Halim Acosta Nathan Henderson Jonathan Rowe Wookhee Min James Minogue James Lester
resource research Museum and Science Center Exhibits
In this paper, we introduce a multimodal early prediction approach to modeling visitor engagement with interactive science museum exhibits.
DATE:
TEAM MEMBERS: Andrew Emerson Nathan Henderson Jonathan Rowe Wookhee Min Seung Lee James Minogue James Lester
resource research Media and Technology
While previous studies have found games and gaming to be a new and innovative communication strategy to inform the public and citizens about scientific research and engage them with it, this article addresses the under-researched question of credibility aspects in research-based gaming. The study analyses agricultural stakeholders' discussions on the credibility of scientific descriptions in The Maladaptation Game — a game based on research on climate change maladaptation in Nordic agriculture. The analysis of focus group transcripts and frame credibility finds that players attribute
DATE:
TEAM MEMBERS: Therese Asplund
resource research Media and Technology
With the acceleration and increasing complexity of macro-scale problems such as climate change, the need for scientists to ensure that their work is understood has become urgent. As citizens and recipients of public funds for research, scientists have an obligation to communicate their findings in ways many people can understand. However, developing translations that are broadly accessible without being “dumbed down” can be challenging. Fortunately, tenets of visual literacy, combined with narrative methods, can help to convey scientific knowledge with fidelity, while sustaining viewers’
DATE:
TEAM MEMBERS: Nickolay Hristov Carol Strohecker Louise Allen Martha Merson
resource project Media and Technology
Glaciers around the world are undergoing dramatic changes. Many people, however, have a limited understanding of the scope of these changes because they are geographically distant and difficult to visualize. Although both digital learning tools and online scientific data repositories have greatly expanded over the last decade, there is currently no interface that brings the two together in a way that allows the public to explore these rapidly changing glacial environments. Therefore, to both improve public understanding and provide greater access to already existing resources, the project team will develop the Virtual Ice Explorer to encourage informal learning about glacial environments. This web application will feature an immersive virtual environment and display a suite of environmental data for an array of Earth's glacial systems. An interactive globe will allow users to select from a collection of sites ranging from polar regions to tropical latitudes. Each featured site will offer users an opportunity to interact with (1) a 3D rendering of the landscape; (2) a local map of the site; (3) historical and contemporary photographs of the site; (4) background information text describing the location, past research, and climate impacts; and (5) available environmental data. One of the most original features of the application will be its realistic, immersive 3D rendering of glacial landscapes by combining very high-resolution digital elevation models and satellite imagery with the application's built-in capabilities for immersive virtual environments. Although immersive environments often require expensive equipment, we are maximizing accessibility by developing the Virtual Ice Explorer to run in a web browser and function across various devices. Thus, the application will be available to anyone with internet access, and they can explore at their own pace.

As part of the successful development of Virtual Ice Explorer, the project team will create a platform for digital elevation models to be visualized and explored in 3D by users within the web application; curate digital elevation models, maps, images, text, and environmental data for inclusion in the web application for up to 11 geographically diverse glaciers/glacial landscapes; iteratively user-test the web application with project partners; and design the architecture of the system to readily scale to a larger collection of glaciers/glacial landscapes. To extend dissemination of the final products, the team has partnered with the U.S. Geologic Survey to showcase four benchmark glaciers in their long-term Glaciers and Climate project. In addition to improving understanding of glacier systems in informal learning environments, the project team will explore applications for spatial learning, employment of 3D environments for educational interventions, and use of Virtual Ice Explorer in formal learning environments. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Jason Cervenec Jesse Fox Julien Nicolas
resource project Media and Technology
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.

In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE: -
TEAM MEMBERS: David Shaffer Kristen Scopinich Holly Gibbs Jeffrey Linderoth