Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Media and Technology
This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.

This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.

This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches
DATE: -
TEAM MEMBERS: Vassiliki Kalogera Aggelos Katsaggelos Kevin Crowston Laura Trouille Joshua Smith Shane Larson Laura Whyte
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.

Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.

Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.

This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
DATE: -
TEAM MEMBERS: David Uttal Kemi Jona
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Media and Technology
In this full-scale research and development project, Oregon State University (OSU), Oregon Sea Grant (OSG) and the Hatfield Marine Science Center Visitors Center (HMSCVC) is designing, developing, implementing, researching and evaluating a cyberlaboratory in a museum setting. The cyberlaboratory will provide three earth and marine science learning experiences with research and evaluation interwoven with visitor experiences. The research platform will focus on: 1) a climate change exhibit that will enable research on identity, values and opinion; 2) a wave tank exhibit that will enable research on group dynamics and problem solving in interactive engineering challenges; and 3) remote sensing exhibits that will enable research on visitor interactions through the use of real data and simulations. This project will provide the informal science educaton community with a suite of tools to evaluate learning experiences with emerging technologies using an iterative process. The team will also make available to the informal science community their answers to the following research questions: For the climate change exhibit, "To what extent does customizing content delivery based on real-time visitor input promote learning?" For the wave tank exhibit, "To what extent do opportunities to reflect on and share experiences promote STEM reasoning processes at a build-and-test exhibit?" For the data-sensing exhibit, "Can visitors' abilities to explain or use visualizations be improved by shaping their visual searches of images?" Mixed-methods using interviews, surveys, behavioral instruments, and participant observations will be used to evaluate the overall program. Approximately 60-100 informal science education professionals will discuss and test the viability of the exhibit's evaluation tools. More than 150,000 visitors, along with community members and local middle and high school students, will have the opportunity to participate in the learning experiences at the HMSCVC. This work contributes to the fields of cyberlearning and informal science education. This project provides the informal science education field with important knowledge about learning, customized content delivery and evaluation tools that are used in informal science settings.
DATE: -
TEAM MEMBERS: Shawn Rowe Nancee Hunter Jenny East