As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) is conducting regional STEM workshops, entitled NFB STEM2U, for blind youth [youth], grades 3 – 6. During this first regional workshop in Baltimore, the NFB operated three different programs simultaneously: one program for youth, a second program for their parents/caregivers, and a third program for a group of teachers who work with visually impaired students. A fourth program, for Port Discovery museum staff, was conducted earlier to prepare the museum staff to assist with the youth program
The underrepresentation of non‐White students and girls in STEM fields is an ongoing problem that is well documented. In K‐12 science education, girls, and especially non‐White girls, often do not identify with science regardless of test scores. In this study, we examine the narrated and embodied identities‐in‐practice of non‐White, middle school girls who articulate future career goals in STEM‐related fields. For these girls who desire an STEM‐related career, we examine the relationships between their narrated and embodied identities‐in‐practice. Drawing on interview and ethnographic data in
This summative evaluation of the University of Washington Botany Greenhouse K-12 Education Outreach Program analyzed the contents of 468 thank-you notes written by program participants using the National Science Foundation’s Framework for Evaluating Impacts of Informal Science Education Projects. Strong evidence was found for impacts in three STEM learning categories: Awareness, Knowledge or Understanding, Engagement or Interest, and Skills.
To this volume on out-of-school STEM learning, we contribute an example of science. Our charge is to discuss what it means for children to be doing science and how educators can assess it. To that end, we’ve chosen an especially clear case. It happens to have taken place in school, but that shouldn’t matter for our purpose here; it’s the substance of the children’s reasoning that we’re assessing as the beginnings of science. We open with the case. We then articulate how it is an example of science, in particular of science as a pursuit. Finally we discuss what this view means for science
More and more young people are learning about science, technology, engineering, and mathematics (STEM) in a wide variety of afterschool, summer, and informal programs. At the same time, there has been increasing awareness of the value of such programs in sparking, sustaining, and extending interest in and understanding of STEM. To help policy makers, funders and education leaders in both school and out-of-school settings make informed decisions about how to best leverage the educational and learning resources in their community, this report identifies features of productive STEM programs in
Data from 15 countries suggest that positive parental attitudes toward science are associated with higher student achievement in science. The findings also indicate that socioeconomic status has no effect on the relationship between parental attitudes and student achievement: Poorer students benefit just as much from positive parental attitudes as richer students.
In-class projects can be an effective way for students to learn subject material that relates to authentic problems people address outside of classrooms. Jurow investigated middle-schoolers’ participation in an in-school math project based on the premise of creating a research station in Antarctica. Students’ engagement with the project and meaning making with math content shifted as students navigated through the different and often competing figured worlds of the classroom and “Antarctica.”
Researchers Maltese, Melki, and Wiebke investigated when lasting interest in STEM is sparked and how it is maintained by comparing the remembrances of adults who did and did not persist in STEM. Both groups said that they became interested in STEM early, usually by Grade 6. Those who persisted in STEM were more likely than those who did not to say that they had always been interested in STEM. Parents and teachers were early influences for those who stayed in STEM fields.
This report summarizes the evaluation findings of the second year of the Science Beyond the Boundaries Early Learners Collaborative (ELC). The three-year project, funded through the Institute of Museum and Library Services (IMLS), connects science centers and children’s museums to enhance early learner programming. In Year Two, the ELC brought together 16 institutions to collaborate directly through regularly scheduled conference call discussions. During these discussions they shared their program experience, ideas on early childhood programs, and their thoughts on current early learner
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
The project, called Experimenting With Storytelling, involved working with four schools in East London and Northamptonshire, United Kingdom. Each after school session, with elementary school children and their parents, consisted of a cultural story or folktale (the ‘storytelling’ part) which had some science in it followed by an associated practical activity (the ‘experimenting’ part).
The Chester County intermediate Unit developed strong collaborations between school districts and informal education providers across Pennsylvania to engage thousands of students in high quality learning experiences. NASA will support these partnering institutions as they engage local teachers in professional development in high quality instruction during the school year. Requirements for both summer activities and school year activities necessitates cooperative agreements with secondary education partners to ensure fulfilling participation requirements such as reaching a large number of middle school students and teachers. The CCIU has many potential partners in the PA SoI project who have expressed interest in participating; including Carnegie-Mellon Robotics Academy, Cheyney University, Widener University, the Philadelphia School District, the Pennsylvania Department of Education and the NASTAR flight facility. With a renewed effort by the CCIU the PA Summer of Innovation Program will be implemented through the PAIU NET to provide quality STEM programming to students and STEM training to teachers while monitoring student outcomes. In Eastern PA camps will be held August 1-5 at 36 sites in the 20 participating school districts statewide. In Chester County, camp sites include Gordon Elementary School and Pope John Paul II Regional Catholic School. Additionally several NASA SoI Mini-Camps were held increasing the breath and depth of the program's impact.
DATE:
-
TEAM MEMBERS:
Chester County Intermediate UnitJohn Hall