Skip to main content

Community Repository Search Results

resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program supports new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This project will meet this goal through rigorous research and the broad implementation of an environmental science literacy professional development and learning program for informal educators and youth engaged in outdoor science programs (OSP). With growing support from the literature and the Next Generation Science Standards (NGSS), much attention has been placed on creating and leveraging interdisciplinary science learning opportunities beyond science classrooms. As such, an estimated 300 residential OSPs currently exist in the United States. Unfortunately, the informal educators often charged with facilitating these deep and impactful science learning experiences often lack robust formal training in evidenced-based, age-appropriate environmental science content knowledge and pedagogy specific for the youth in their programs. This issue is often more pronounced in under-resourced and under-served programs and communities. This project will directly address these pervasive challenges in the field by not only providing much needed science focused professional development and resources to informal educators but also by specifically targeting and training informal leaders and educators serving youth in predominately rural areas, low-income communities, and underrepresented communities.

Approximately 200 OSP leaders at 100 OSPs around the country will participate in a week-long, intensive training in the professional development model at one of five regional residential leadership institutes. OSP leaders will then redeliver the training to the approximately 1,500 OSP educators/field instructors in their home institutions. The OSP educators/field instructors will then use what they learn through the professional development to facilitate the environmental science learning program (i.e., curriculum, field experiences, resources, pedagogy) to over 1 million youth (grades 3-8) enrolled in their residential outdoor science programs. In addition, a rigorous implementation study, efficacy study and evaluation will be conducted. The implementation study will investigate: (a) Which of the professional learning model practices were implemented and (b) What successes and challenges the programs faced implementing the model. The mixed methods efficacy study will explore: (a) if outdoor science programs contribute to the development of science learning activation and environmental literacy? and (b) what are the features of these experiences that are correlated with increases in science learning activation and environmental literacy. Approximately 25-35 youth will be randomly selected from each of 50 randomly selected sites to participate in the efficacy study. The data and findings from the research and evaluation produced by this project will contribute to a relatively sparse knowledge and research base specific to youth efficacy and implementation processes and practices across nearly 1/3 of the estimated 300 existing residential outdoor science programs in the United States.
DATE: -
TEAM MEMBERS: Craig Strang Rena Dorph
resource research Media and Technology
This guide is intended to provide a starting point for those developing proposals and projects designed to broaden participation in science, technology, engineering and mathematics (STEM) through informal learning experiences. It is an outcome of an Association of Science-Technology Centers (ASTC)/Center for Advancement of Informal Science Education (CAISE) digital resource curation workshop (August 5, 2016) where participants identified relevant projects from the InformalScience.org database. This digital resource complements the synthesis report of the Leadership Workshop for Achieving Scale
DATE:
TEAM MEMBERS: Center for Advancement of Informal Science Education (CAISE) Association of Science-Technology Centers David Ucko Tricia Edwards Leah Golubchick Neda Khalili Andrea Motto Mariah Romaninsky Meeta Sharma-Holt Gary Silverstein Jeanette Thomas Don Wittrock Margaret Glass Michelle Kenner Lesley Markham Grace Troxel
resource research Media and Technology
This EAGER project sought to generate early knowledge for the museum field about the capabilities and limitations of an Indoor Positioning System to: 1) automate the collection of visitor movement data for museum research, and 2) enable location-aware applications designed to support museum visitor learning. Working with Qualcomm, Inc., the Exploratorium installed and experimented with an early prototype of a whole-museum, WiFi-based IPS that acquired and processed timestamped location data (latitude/longitude) from mobile test devices, similar to cell phones. The project 1) defined IPS ground
DATE:
TEAM MEMBERS: Joyce Ma Josh Gutwill William Meyer Claire Pillsbury Douglas Thistlewolf
resource research Professional Development, Conferences, and Networks
Children are already learning at birth, and they develop and learn at a rapid pace in their early years. This provides a critical foundation for lifelong progress, and the adults who provide for the care and the education of young children bear a great responsibility for their health, development, and learning. Despite the fact that they share the same objective - to nurture young children and secure their future success - the various practitioners who contribute to the care and the education of children from birth through age 8 are not acknowledged as a workforce unified by the common
DATE:
TEAM MEMBERS: LaRue Allen Bridget Kelly
resource project Media and Technology
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.

To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.

The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Sonja Latimore Marisa Wolsky Megan Silander Borgna Brunner
resource research Public Programs
CSA’s Education Working Group has taken on as its mission to enable, inspire, investigate, and facilitate effective integration of scientific and educational goals, practices, and outcomes in citizen science. We offer the Citizen Science Association community the following vision for what learning, and benefit to learners, is possible through participation in citizen science.
DATE:
resource project Professional Development, Conferences, and Networks
The National Center for Science and Civic Engagement (NCSCE) will conduct a Collaborative Planning project to maximize the collective impact of two well-established national STEM learning networks, National Informal STEM Education Network (NISE Net) and Science Education for New Civic Engagements and Responsibilities (SENCER). Through a strategic collaboration that leverages their respective achievements, resources, and expertise, the combined networks can advance informal science education that engages and empowers citizens and their communities as they address the complex civic challenges. The project will conduct a strategic planning process to envision how to unify two networks to increase a durable and identifiable infrastructure for cross-sector collaboration focused on linking science and civic engagement. It is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

The project objective of the planning process is to create a new and expanded national infrastructure that will increase the capacity of science centers and other informal learning organizations to enhance the public's engagement with science through attention to civic issues, and access new partners, participants, and resources from higher education institutions. The project's core activity will be a three-stage planning process: Phase 1, an assessment of assets, resources, and regional complementarity of the networks, and the development and investigation of key research questions; Phase 2, a planning workshop involving 29 project leaders from both organizations and stakeholders from formal and informal science to identify and develop specific collaborative strategies; and Phase 3, an evaluation and dissemination of the planning results to the networks and the development of a new multi-year project to strengthen the national infrastructure for formal and informal STEM education.
DATE: -
TEAM MEMBERS: William Burns Larry Bell Eliza Reilly Paul Martin
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds efforts that seek to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will achieve these aims by identifying and closely evaluating critical factors and processes that are necessary to effectively broaden access and sustain professional learning (PL) for educational professionals working within informal STEM learning (ISL) settings. The context for this work builds on an evidence-based and nationally field tested professional learning model, Reflecting on Practice (RoP). This model will be refined to provide ISL educators with increased access to a proven PL curriculum via an in-person or blended approach, enhanced localized support, and cultivated regional professional learning communities. There is still little known about the effectiveness of blended PL within informal contexts. The emphasis on greater accessibility to PL is particularly important to the ISL field, given the significant number of informal STEM educators and institutions in underserved and remote locations, often facing disparate and insurmountable challenges in access to high quality STEM professional development. This modular program will not only target a broad range of informal institutions; varying in size, STEM content foci, geographic location and communities served but it is also uniquely designed for institutional customization and adoption, further increasing the likelihood of wide-spread uptake, participation, and engagement. If successful, this broad implementation effort will directly impact over 3,000 informal science educators and professionals in nearly 350 informal STEM learning institutions across the country. The intended theory of action and iterative, design-based implementation approach will be closely monitored, documented and analyzed by an experienced team of external evaluators, using formative and summative evaluative methods. A mixed methods approach will be employed to: (a) examine the effectiveness and accessibility of blended PL and regional PLCs for the ISL field, (b) identify critical design features in blended PL and regional PLCs for impacting educators' practice, (c) determine how PLCs can develop and continue in ISL through looking at what system of support is needed, and (d) ascertain the effective role of the Leaders and Leadership Sites. Data will be collected at all levels - from the RoP directors and PIs, document reviews, interviews and observations with RoP leaders at the six partnering institutions, and surveys with the RoP facilitators (n=700) and informal STEM educator participants (n=2,000). The results of the findings could be instrumental in the development of future frameworks and models designed to broadly disseminate similar professional learning models effectively within ISL contexts.
DATE: -
TEAM MEMBERS: Lynn Tran Catherine Halversen Kalie Sacco Sarah Pedemonte
resource evaluation Media and Technology
Roots of Wisdom (also known as Generations of Knowledge) is a 5-year project funded by the National Science Foundation (NSF-DRL #1010559) in support of a cross-cultural reciprocal collaboration to develop a traveling exhibit, banner exhibit, and education resources that bring together Traditional Ecological Knowledge (TEK) and western science. The summative evaluation for public audience impacts was conducted by the Lifelong Learning Group (COSI, Columbus, OH), in collaboration with Native Pathways (Laguna, NM).
DATE:
resource project Public Programs
Science Club Summer Camp (SC2) is a practicum-based teacher professional development program for elementary school teachers, aligned to the recently released Next Generation Science Standards (NGSS). It seeks to address well-described gaps in the scientific training of elementary teachers that threaten the effective implementation of NGSS and interrupt development of early youth science skills. We offer that the best way to prepare a future STEM and biomedical workforce is to help improve NGSS-aligned instruction at the K-5 level.
SC2 uses an integrated approach to train Chicago Public School teachers and youth in the nature of science. An interdisciplinary team of scientists, master science teachers, NGSS experts, and youth development staff will collaborate to incorporate the NGSS Disciplinary Core Ideas (DCIs), Crosscutting Concepts, and science and engineering practices into both out-of-school time learning at a summer camp and academic year instruction. Program participants will also learn about NGSS connections to health and biomedicine through interactions with practicing scientists, visits to research labs, and inquiry into health phenomena.

Over the course of the program, we will train 64 teachers and more than 2000 youth in authentic science and health practices. A multi-faceted evaluation plan will assess the impact of our program on teacher beliefs, knowledge, and understanding of the NGSS, and the degree to which their training results in changes to their instructional practice. Additionally, we will help teachers design critical NGSS-aligned assessment tools as measures of student learning. These instruments will provide early evidence on the connections between NGSS-aligned instruction and deeper student learning.

In addition to addressing the acute need for NGSS-aligned teacher professional development strategies, and high quality summer learning opportunities for disadvantages youth, it is our expectation that this “dual use” approach will serve as a model for future teacher professional development programs that seek to bridge learning in formal and informal environments and strengthen academic-community partnerships.
DATE: -
TEAM MEMBERS: Michael Kennedy Rebecca Dougherty
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource evaluation Public Programs
Science from the Start (SFTS) was a two-year early childhood program funded by IMLS, with matching funds from the Sciencenter. The goal of SFTS was to empower teachers, parents, and caregivers to do more science with their students and children. Although the SFTS program continues today,this final summary report describes the results of the initial two-year pilot project only.
DATE:
TEAM MEMBERS: Deborah Perry Lorrie Beaumont Michelle Kortenaar Victoria Fiordalis Lauren Van Derzee Bethany Resnick