Skip to main content

Community Repository Search Results

resource research Public Programs
This book contains project ideas, articles, and best practices from educators at the forefront of making and hands-on education. The Stanford University FabLearn Fellows are a group of K­-12 educators teaching in Fab Labs, makerspaces, classrooms, libraries, community centers, and museums—all with the goal of making learning more meaningful. In this book, the FabLearn Fellows share inspirational ideas from their learning spaces, assessment strategies and recommended projects across a broad range of age levels. Illustrated with color photos of real student work, the Fellows take you on a
DATE:
TEAM MEMBERS: Paulo Blikstein Sylvia Libow Martinez Heather Allen Pang
resource research Public Programs
Science and technology have become tools to legitimize messages that affect the world in terms of society, politics and economy. This paper presents part of the results of a study that analyzed the symbolic construction of the future in the scientific-technological discourse at EPCOT theme park in Orlando, Florida. The sociohistorical conditions and narrative strategies are analyzed based on the theoretical and methodological approach by John B. Thompson. The results highlighted that the construction of the notion of progress is strongly influenced by the commercial and political interests of
DATE:
TEAM MEMBERS: Daniela Martin
resource research Public Programs
This is a story about learning STEM content and practices while making objects. It is also a story about how that learning is contextualized in one young man’s disruption of racism simply by trying to learn how gears work. Our project, Investigating STEM Literacies in MakerSpaces (STEMLiMS), focuses on how adults and youth use representations to accomplish tasks in STEM disciplines in formal and informal making spaces (Tucker-Raymond, Gravel, Kohberger, & Browne, 2017). Making is an interdisciplinary endeavor that may involve mechanical and electrical engineering, digital literacies and
DATE:
resource project Public Programs
In informal science contexts, the word tinkering describes a learning process that combines art, science, and technology through hands-on inquiry. With the growth in popularity of the making and tinkering movements nationwide, these practices are increasingly making their way into early childhood environments where they have great promise to positively impact the early STEM learning experiences of young children. This 2-day conference hosted at the Exploratorium in San Francisco will bring together stakeholders exploring applications of tinkering in informal early childhood environments. The conference will provide opportunities to explore the role, value, and challenges associated with implementing meaningful tinkering interventions in learning environments serving young children. The project seeks to 1) Convene stakeholders from the tinkering and early childhood programs; and 2) further the exploration and evolution of practitioner and researcher knowledge about tinkering in early childhood contexts. The long-term goal is to support more young children being introduced to STEM learning through tinkering's adaptable approaches to STEM-learning that align with the developmental needs of this young population.

This project will collaboratively analyze and document the state of the field of STEM-rich tinkering in informal early childhood contexts. Additionally, the project will deepen relationships across the early childhood tinkering ecosystem. Additional outcomes include an effort to provide tangible resources to the field highlighting current promising practices and future opportunities for development. The conference will also provide an understanding of how tinkering interventions may contribute to the development of STEM interest, identity and learning amongst early childhood audiences. Finally, the conference will bring together research and practitioners to explore how tinkering in early childhood settings can be used effectively to meet the needs of diverse learners including learners from underserved and underrepresented communities. The project will recruit a total of 75 participants with backgrounds in the field of tinkering and STEM learning, early childhood research, and professional development practices representing a diverse set of institutions and organizations. Research questions for the conference will focus on: 1) What types of supports and professional development do early childhood educators need to facilitate early STEM learning through tinkering? 2) What types of built environment and hands-on materials best support young children's ability to learn STEM content and practices through tinkering? 3) What types of strategies best support caregiver involvement in young children's learning? 4) What is the role of early childhood tinkering in young children?s STEM learning, interest, and identity development? 5) How can culturally and linguistically sustaining pedagogies be used to ensure equity across a diversity of young learners and their families? To answer these research questions the project will use qualitative methods before, during and post-conference. Research methods will include a landscape analysis identifying needs of participants, surveys, observations and informal interviews with participants.

This Conference award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mike Petrich Lianna Kali
resource project Public Programs
A makerspace is a place where participants explore their own interests and learn by creating, tinkering, and inventing artifacts through the use of a rich variety of tools and materials. This project will develop and research a flexible model for makerspaces that can be adapted to local settings to support informal STEM learning for hospitalized, chronically ill patients in pediatric environments who are predominantly youth of color from low-income backgrounds. These youth are subject to health disparities and healthcare inequities. Their frequent absence from school and other activities disrupt friendship formations, reduce their opportunities for social support, reduce their access to environments where they can feel a sense of self-agency through learning and creative activities. Through patient centered co-design, this project will build adaptable STEM makerspace environments conducive to STEM-rich learning, the exercise of self-agency, and development of STEM identity. Project design will focus on the sensitive nature of working with vulnerable populations (i.e., immunocompromised patients). The project will develop and disseminate several resources: (1) a flexible makerspace model that can be adapted to work in different pediatric settings; (2) research methods for conducting research in highly sensitive environments with and alongside young patients; and (3) professional development resources and a playbook including guidebook and facilitators guide that will articulate principles and processes for designing, implementing and sustaining makerspaces in pediatric settings. These resources will be widely disseminated through maker and other informal STEM networks.

The project will pursue two innovations. First, the project will develop the physical design of adaptable informal STEM makerspaces in pediatric settings. Second, the project will develop innovative patient-centered methodologies for studying approaches to physical design and the effects of makerspace installations for informal STEM-learning, self-agency, and STEM identity development. Using a design-based research approach, the project will investigate: (1) the extent to which physical makerspace designs support access to material, relational, and ideational resources for STEM-learning and well-being; (2) the extent to which makerspace installations, researchers, and medical care staff support patients in accessing and generating tools and other resources for personal learning and a sense of agency; and (3) the extent to which makerspace design with a focus on affording material, relational, and ideational resources provide rich opportunities for young patients to explore their own interests and cultivate STEM identities. One of the project's innovations, beyond development of adaptable makerspace model involves developing an innovative patient-centered methodology for conducting educational research toward broadening participation in STEM in highly sensitive medical care environments. The project will employ a mixed-methods research design and collect a variety of data to address these areas of research including documentation of makerspace design plans and renderings, observational data gathered through fieldnotes, video and audio recordings, informal interviews with patients, their families, and child-care staff, and patient generated artifacts. Articles for researchers and practitioners will be submitted for publication to appropriate professional journals and peer-reviewed publications.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Gokul Krishnan Maria Olivares
resource project Public Programs
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.

The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Public Programs
Makerspaces are learning environments that engage participants in authentic science and engineering practices, using hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Recently there has been a rapid growth of makerspaces in schools and in informal places like museums, libraries, and community centers. However, many of these spaces are not accessible to all members of society. This project will produce a model for a STEM makerspace that focuses on increasing access. The model has four critical components that operate together: affordable housing, informal STEM learning, maker education, and multi-generational learning. This project will develop and study the community-based, multigenerational makerspace model for Bayview Towers, a 200-unit affordable housing complex in Connecticut. The Multi-Gen STEM Makerspaces project brings together CAST, a non-profit education research organization, the NHP Foundation/Operation Pathways, a national affordable housing provider, and the Boston University Social Learning Lab, which researches the social context for STEM learning. The project will produce a Multi-Gen Maker Playbook comprised of an educational guide for a series of four-week workshops around different themes and modes of making. The Playbook will also serve as a program model that guides similar communities on how to create and run sustainable and thriving maker programs of their own. Families in the Bayview Towers community will build an understanding of science, technology, engineering, and mathematics (STEM) concepts through participation in an onsite makerspace. Families will relate what they are doing through making to longer-term goals connected to STEM learning, education, and careers. The project will also enable the engagement of individuals in the co-design (individuals provide creative contributions) of making that can be translated into community structures and values that support a sustainable makerspace. The affordable housing context will provide understanding of individual and other social factors that impact learners' sense of STEM identity. The project will support mobility from poverty by including STEM learning as part of the resident services.

The research will examine how low income communities access, engage, and learn in makerspaces, and relate their learning to relevant goals. The team will use design-based research (DBR) whereby participants and researchers work together to design interventions intended to explore theory through cycles of enactment, analysis, and revision. The DBR research will answer the following questions:


In what ways, if any, does the model support residents experiencing STEM learning as consequential?
What kind of making goals do residents set and how do they embed STEM in these goals?
If residents experience STEM learning as consequential through the workshops, do they also see the relationship between their making goals and longer term goals?
Do those residents that use the makerspace more frequently experience more positive outcomes in terms of consequential STEM learning?
How do the various makerspace structures - training of facilitators, dedicated space and equipment, Playbook - support the model?
Are groups of residents participating regularly in the makerspace and if so, who is in these groups? Do these groups start to identify as a maker community? Is the community finding the makerspace of value?
In what ways does the organization and operations of the makerspace support building a sustainable model for multigenerational and consequential learning?


Participants will include 90 youth and 90 adults from the resident community at Bayview Towers. Research data to be collected includes open-ended response measures for scoring residents' interpretation, analysis and understanding of each workshop elements. Also, interview protocols will be used to guide the refinement of the Multi-Gen Maker Playbook features and analyze usability, feasibility, engagement and user experience of the Multi-Gen Maker Playbook within the platform. The program will use semi-structured interview protocols on participants' goals and STEM identity and focus group protocols on community maker values and makerspace structures. Additionally, a Likert-style survey on STEM identity will also be adapted from the Science Identity Scale. Project evaluation will examine the overall achievement of program goals and objectives. Project results will be communicated by traditional means of dissemination to scholars and practitioners. The team will also create targeted digital media, including online articles, podcast interviews, and blog posts, to reach a broader audience.


This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sam Catherine Johnston Kathleen Corriveau Jess Gropen Kim Ducharme Kenneth White
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

Making, which supports interest-driven skill-development and learning, has been recognized as having the potential to engage underserved youth in STEM. Makerspaces are community spaces that allow participants to create items using tools, such as 3-D printers, computer-aided design, and digital fabrication technologies. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. Digital Harbor will partner with recreation centers, two in Pittsburgh and two in Baltimore, to research, refine and implement an equity-based approach to making that will engage underserved youth aged 12-16 in making. The project will prepare out-of-school time (OST) educators to collaboratively develop culturally sensitive curricula with underserved youth to engage them in maker-based technology and computer science experiences. The project will (1) design a professional development program that will prepare and support local educators to collaboratively design and deliver localized, maker-based, STEM curricula; (2) research the impact of these programs on both educators' and youth's self-efficacy, creativity, and attitudes towards STEM; and (3) develop and evaluate an online Localization Toolkit that will prepare educators in makerspaces across the nation in using an equity-based approach to create localized content. The project will result in four new maker sites (two in Baltimore and two in Pittsburgh directly impact 4 sites (10 educators and 240 youth). The project will result several resources that will support the development and educational programs of other community sites. The resources will include the Localization Toolkit, Case Studies, Best Practices, and Research Study. The Localization Toolkit has the potential to strengthen infrastructure and capacity building in OST maker-based programs, as well as other informal and formal education programs using similar pedagogies and design principles.

The project will use a mixed-methods approach in researching the challenges and processes involved in establishing the four maker sites in Baltimore and Pittsburgh, the approaches and effectiveness of the professional development program on OST educators, and the impacts of the project of participation on the self-efficacy, creativity, and attitudes on participating youth and educators. The research study will apply several instruments and data collection sources to develop quantitative data, including youth attendance logs, the Upper Elementary and Middle/High School Student Attitudes toward STEM survey, a retrospective technology self-efficacy survey and pre-post surveys. In addition to project document review, the researchers will collect qualitative data through educator interviews, educator focus groups, and youth focus groups. Project research and resources will reach key audiences of learning scientists and OST educators through articles in peer-reviewed and practitioner journals, public events and professional conferences. These audiences will also be reached through the project website, which will share project resources. The project will reach OST sites across the country directly through dissemination partners, including the National Recreation and Parks Association, Association of Science and Technology Centers, and statewide out-of-school networks.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Foad Hamidi Andrew Coy
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project aims to understand ways to empower Latinx families (adult caregivers) to feel confident in their ability to support their middle school-aged girls in science and engineering activities. The project involves seven weeks of family programming around rockets or urban farming, as well as separate conversation groups for adult family members and girls. The project is relevant for several reasons: females and Latinx individuals are both underrepresented in science, technology, engineering, and math (STEM) coursework and careers; girls tend to lose interest in STEM by middle school age; and adult family members may have an impact on their children's attitudes and interests. The project partners with school districts and nonprofit organizations in Arizona and California.

This multidisciplinary project's priority is broadening participation, with a focus on increasing Latina girls' science and engineering interests through Family Project-Based Learning Activities, Conversation Groups, and a cultivated Community of Learners. It is based on the frameworks of Social Cognitive Career Theory and Community Cultural Wealth. The project aims to empower families (adult caregivers) to feel confident in their ability to support their daughters in science and engineering activities, which is often low especially among Latinx parents. The project will develop and evaluate two out-of-school enrichment methods for aiding families in encouraging and supporting their daughters in science: Family Problem-Based Learning Activities, which focus on rockets and urban farming, and Conversation Groups, which provide information and discussion for separate groups of parents and girls. A series of pilot studies will be conducted with 80 families to iteratively evaluate and improve the materials and procedure prior to the main study with 180 families, featuring a factorial design with a control group.

The materials developed and research findings may inform similar projects, especially those for students from culturally and linguistically diverse backgrounds and projects seeking to enhance the role of families in learning. The hypothesis guiding the project is that the greatest gains will be produced with the synergistic combination of enrichment methods. Another component that can potentially have broad impact is working to create environments where Community Cultural Wealth is recognized and enhanced through interactions of different families, creating Communities of Learners. This can inform projects that recognize the importance of community and/or that seek to use culture as an asset. The proposed study will engage three geographically distributed universities and several community partners. It will also provide university students and community leaders opportunities for work on instructional design, implementation, and research. The team will disseminate their findings and methods through multiple avenues to reach researchers, parents, leaders, curators, and educators in informal and K-12 settings.

This Research in Service to Practice award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Short-Meyerson Peter Rillero Peter Meyerson Margarita Jimenez-Silva Christopher Edwards
resource research Public Programs
Tinkering is an approach to learning increasingly adopted within informal learning settings to engage people with STEM learning (science, technology, engineering and mathematics). It builds on ideas in inquiry-based pedagogy and exploits some of the most engaging and motivational elements of learner-centered, immersive and hands-on learning approaches to develop 21st century skills such as critical thinking, creativity, collaboration, problem solving, communication, responsibility, self-confidence, digital literacy and entrepreneurship. In a Tinkering activity, the learner is presented with
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom Inka de Pijper Vanessa Mignan MARIA XANTHOUDAKI
resource research Public Programs
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom MARIA XANTHOUDAKI