How should we convey science—both its findings and its value to society—to the many members of the public who lack either scientific training or intense interest in scientific progress? In October 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to explore ways of better presenting science—both specific findings and the processes of discovering and confirming—to the public. Participants discussed ways to develop data-enriched narratives that communicate to the public and policy makers in an engaging and rigorous way the work of basic research. They also
DATE:
TEAM MEMBERS:
National Academies of Sciences, Engineering, and Medicine
resourceresearchProfessional Development, Conferences, and Networks
This article provides a brief synopsis of the second Science of Science Communication Sackler Colloquim, held September 23-25, 2013 at the National Academy of Sciences. It presents summaries and links to relevant research that informed the meeting.
Keystone Connect Network is a proposed regional broadband network whose purpose is to increase educational opportunities and generate business growth. The backbone of this plan is the Pennsylvania Research and Education Network's (PennREN), a next generation high-speed internet network, managed by KINBER, which educational institutions can use to train their students and create new learning opportunities; and business can create new products and connect with their customers.
Much of science communication is peer-to-peer communication in collaborative networks for innovation from the fuzzy front-end of innovation until the marketing back-end. Scientists and engineers at meetings tables talking about new developments. Or scientists and engineers in collaboration with industry and policy makers, discussing various scenarios for implementation of e.g. health care services. However, this focus on science communication 'within the action' of uncertain development of science and technology and its attached academic domains such as innovation studies, high-tech marketing
Written in response to a previous article by Weingart and Guenther [2016] in JCOM, this letter aims to open up some critical issues concerning the ‘new ecology of communication’. It is argued that this evolving ecology needs to be openly explored without looking back to a previous idyll of ‘un-tainted’ science.
In response to Weingart and Guenther [2016], this essay explores the issue of trust in science communication by situating it in a wider communications culture and a longer historical period. It argues that the popular scientific culture is a necessary context not only for professional science, but also for the innovation economy. Given that the neutrality of science is a myth, and that science communication is much like any other form of communication, we should not be surprised if, in an innovation economy, science communication has come to resemble public relations, both for science and for
This study of the science communication views and practices of African researchers ― academics at the National University of Science and Technology (NUST) in Zimbabwe ― reveals a bleak picture of the low status of public science engagement in the developing world. Researchers prioritise peer communication and pay little attention to the public, policy makers and popular media. Most scientists believe the public is largely not scientifically literate or interested in research. An unstable funding environment, a lack of communication incentives and censoring of politically sensitive findings
DATE:
TEAM MEMBERS:
Heather NdlovuMarina JoubertNelius Boshoff
This fact sheet from the Institute of Museum and Library Services (IMLS) provides statistics and talking points related to incorporating STEM into public library programming.
DATE:
TEAM MEMBERS:
Institute of Museum and Library Services (IMLS)
Tomorrow’s inventors and scientists are today’s curious young children—as long as those children are given ample chances to explore and are guided by adults equipped to support them. STEM Starts Early is the culmination of a deep inquiry supported by the National Science Foundation that aims to better understand the challenges to and opportunities in STEM learning as documented in a review of early childhood education research, policy, and practice and encourages collaboration between pivotal sectors to implement and sustain needed changes. The report features research by the FrameWorks
DATE:
TEAM MEMBERS:
Elisabeth McClureLisa GuernseyDouglas ClementsSusan Nall BalesJennifer NicholsNat Kendall-TaylorMichael Levine
Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade.
The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.
The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.
DATE:
-
TEAM MEMBERS:
Michael LevineLori TakeuchiElisabeth McClure
resourceprojectProfessional Development, Conferences, and Networks
Science, Technology, Engineering, and Mathematics (STEM) education and workforce development in the US are critical for global competitiveness and national security. However, the U.S. is facing a decrease in entrants to the STEM workforce which is not shared evenly across demographics. Specifically, women, underrepresented minorities, and people with disabilities obtain STEM degrees and enter the STEM workforce at levels significantly below their demographic representation in the U.S. The National Science Foundation's (NSF) Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities. This conference focuses on collective impact as a strategy to address the broadening participation challenge. Collective impact is distinguished from collaboration in that the alliances require a backbone organization to succeed. The goal of this project is to organize a conference to inform backbone organizations toward broadening participation in STEM education and the workforce.
The conference takes place at the University of California, San Diego January 20-22, 2017 and brings together Project Investigators from the Design and Development pilots, along with stakeholders in broadening participation in STEM on a local, regional, and national scale. The overarching goal of the conference is to develop the knowledge base of participants in the application of the collective impact model, and the role of backbone organizations to address specific issues and transition points of the STEM pipeline. Conference participants include K-12, community college, and university representatives; leaders in graduate education, policy makers and private sector employers. The conference includes plenary sessions, flash presentations, and interactive workgroups engaged in the development of collective impact approaches to problems in Broadening Participation in STEM. Workgroups share their insights, and audience feedback is electronically curated via Twitter and Storify. To respond in real time to participant questions or insights this conference uses the innovative platform, IdeaWave, to solicit, sort and value ideas from the attendees before, during, and after the conference. Conference results are integrated into a final report to inform the NSF INCLUDES Alliances backbone organizations. The intellectual merit of the project is that it advances knowledge about the barriers to broadening participation in STEM education and the workforce, the collective impact model, and the role of the backbone organization to guide the vision and strategy, and support the activities, evaluation, and communication of the NSF INCLUDES Alliances. The broader impact of this project is that it benefits society by informing backbone organizations, which leads to broadening participation of the STEM workforce and ultimately increases U.S. global competitiveness and national security.
DATE:
-
TEAM MEMBERS:
Kim Barrett
resourceprojectProfessional Development, Conferences, and Networks
As the NSF INCLUDES Program seeks to scale from the Launch Pilots to the full program, achieving its goals to promote the progress of science by broadening participation will rely on the ability to successfully scale the technical and human infrastructure for collaboration across the mini-backbones and the national backbone. The American Association for the Advancement of Science (AAAS) is seeking support for an NSF INCLUDES infrastructure conference that will provide a forum for discussion about current and long term technical and human infrastructure needs for scaling. Technical infrastructure might refer to the functions provided by any communication, community building and collaboration tool, such as document sharing or storage. Human infrastructure might refer to data analysts or community managers.
The conference would include discussion of the structures and processes for creating a shared, overarching vision of the changes at all levels and for all groups that would be needed to promote the talent development goals envisioned within INCLUDES, supporting the current design and development launch pilots, and supporting scaling and promoting conditions for sustainability. Based on research on collective impact and improvement science in education, we would offer presentations followed by structured conversations within the setting of working sessions. The goals of AAAS for diversity and inclusion in science, technology, engineering and mathematics (STEM) are very much in keeping with the goals of INCLUDES; thus AAAS proposes to offer its existing online platform, Trellis, to support this comprehensive initiative to develop STEM talent from all sectors and groups in our society.
The goals of the conference activity are to: (1) define short term and long term communications and networking needs that can support the pilots; (2) outline the technical specifications and human resources needed to support the pilots; (3) envision the technical, resource and human needs required to support Alliances; (4) develop design specifications for intra- and cross Alliance networking to support technical assistance, identification and curation of resources, support for communities of practice and capture of lessons learned and (5) propose tools, techniques, capacities and functionalities for an NSF INCLUDES National Network Backbone.