Skip to main content

Community Repository Search Results

resource research Public Programs
The author expresses his opinion on the benefits of informal science resources and introduces article topics in this issue, which include school partnerships with local scientists, collaborations with community partners, and family science events.
DATE:
TEAM MEMBERS: David Heil
resource research Professional Development, Conferences, and Networks
The theme of ICLS 2014 is “Learning and Becoming in Practice.” By focusing on learning and becoming, we aim to foreground the ways that learning entails becoming a certain kind of person. By focusing on learning and becoming in practice, we aim to foreground the ways that learning processes are situated within different kinds of practices. Three kinds of practices encompass a range of contexts and processes in which people learn: by engaging in the epistemic practices of disciplines, by participating in sociocultural practices, and by engaging in design. Two additional practices we highlight
DATE:
TEAM MEMBERS: Joseph Polman
resource research Public Programs
Since 2008, Natasha Ray, New Haven Healthy Start Consortium Coordinator and physician researchers from the Yale Robert Wood Johnson Clinical Scholars Program (YRWJFCSP) have partnered on a series of research projects to address maternal health issues in New Haven, CT. During these partnerships, Natasha Ray, Kenn Harris, Director of New Haven Healthy Start and community research faculty from the YRWJFCSP reflected on what they experienced as best practices in community partnered research. An opportunity arose between these two long standing research partners to gain a greater understanding of
DATE:
TEAM MEMBERS: Natasha Ray Karen Wang
resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco
resource research Public Programs
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS: The Coalition for Science After School Leah Reisman
resource research Public Programs
From March 26-28, 2014, the Coalition for Science After School (CSAS) hosted its final summit, Passing the Torch: Advancing Opportunity for Quality Science Learning. The Summit was intended to: (1) celebrate a decade of progress in strengthening and expanding STEM learning opportunities in out-of-school time; (2) call attention to critical issues in ensuring that all young people have opportunities for quality STEM experiences in their local communities; and (3) stimulate ideas, strategies, partnerships and commitments to continue to increase opportunities for quality STEM experiences across
DATE:
TEAM MEMBERS: The Coalition for Science After School Leah Reisman
resource project Public Programs
The Decapoda - shrimp, lobsters, and crabs - are an economically important, diverse group of animals whose geologic history extends back 400 million years. Living representatives, numbering over 15,000 species, are global in distribution and nearly ubiquitous in oceanic and non-oceanic environments. They exert a major impact on ecosystems; understanding the dynamics of their fossil record will illuminate their historical impact on ecosystems. We will test the hypothesis that decapods are arrayed in a series of discrete evolutionary faunas; remarkably, the vast array of living and fossil decapods in diverse interrelated groups have exploited four basic body plans repeatedly. Other hypotheses to be tested are that the Decapoda have repeatedly adopted a limited number of baupläne, or generalized architectures, throughout their history; that they have experienced explosive evolutionary radiations followed by periods of no determinable change; and that they are generally resistant to mass extinction events. These hypotheses will be tested using a unique dataset compiled and assessed by the Principle Investigators: a compilation of all fossil decapod species, arrayed in a classification scheme including fossil and living taxa, with geologic and geographic ranges of all species, including a phylogeny (i.e. "family tree") for many sub-groups within the Decapoda. The dataset will be expanded to include ecological data for each taxon and will be entered into the Paleobiology Database, an NSF-supported vehicle for analyzing the fossil record. Employing its methodology, patterns of diversity and macroevolution of the decapods will be generated at levels ranging from the entire Order to species level. This will result in a comprehensive analysis of macroevolutionary patterns of this major group for the first time. Available paleoecological data derived from field studies and published records will be used to determine the effects of various environmental factors such as seafloor conditions, reef development, water depth, and temperature on morphology, extinction survivorship, and diversity. Because decapods have a remarkable range of morphological variation preservable in the fossil record, the diversity of the groups of decapods can be assessed in relation to their morphological characteristics. Defining the history of taxa with specialized morphology will permit recognition of body plans that have been exploited by different decapod groups throughout the history of the clade.

Intellectual merit. This study will provide the most comprehensive analysis of macroevolution of the Decapoda yet conducted, all based upon a unique dataset that is internally consistent by virtue of its having been developed entirely by the investigators. It will document the significance of employing a high resolution, species-level database for interpretation of diversity. The hypotheses and conclusions derived here will provide a model and the foundation for future work on Decapoda, Arthropoda, and macroevolution of well-constrained groups. It will provide a test for the efficacy of PBDB data versus a constrained dataset assessed by specialist systematists.

Broader impacts. The work will introduce undergraduate students at Kent State at Stark, an undergraduate campus, and Kent State at Kent, to research that involves paleoecological, paleogeographical, and functional morphological elements which, in turn, will be communicated to other students. Because decapods are known to virtually everyone, they form an excellent group to use to inform the public about ancient patterns of diversity and the relationship between the morphology of organisms, variations in their environmental requirements, and their adaptability to different physical conditions. This will be conveyed in a professionally constructed display which has the potential to be exhibited in museums and universities around the country. Small kits designed for use in elementary and middle schools will be available to allow students to make their own observations about the adaptations of decapods to their environment and its effect on diversity. Published papers and presentations on results of research at meetings will be prepared throughout the course of the research. Because the study of modern biodiversity is a concern of the general public, presentations to broader audiences as well as geology classes will provide a broad historical context for understanding modern patterns of diversity. Data entered into Paleobiology Database and Ohio Data Resource Commons will be openly available to other researchers and the general public. Combined, the databases will assure archival storage and public access, following a proprietary period.
DATE: -
TEAM MEMBERS: Carrie Schweitzer Rodney Feldmann
resource project Media and Technology
Discovering and understanding the temporal evolution of events hidden in text corpora is a complex yet critical task for knowledge discovery. Although mining event dynamics has been an important research topic leading to many successful algorithms, researchers, research and development managers, intelligence analysts and the general public are still in dire need of effective tools to explore the evolutionary trends and patterns. This exploratory project focuses on developing and validating a novel idea called narrative animation. Narrative animation uses animated visualizations to narrate, explore, and share event dynamics conveyed in temporally evolving text collections. Film art techniques are employed to leverage the animated visualizations in information organization and change detection, with the goals of enhancing analytical power and user engagement. A prototype system called CityStories is being developed to generate narrative animations of events in cities derived from web-based text. If this novel, risky research is successful, it is expected to yield fundamental results in narrative animation that can advance the current paradigm in information visualization and visual analytics by developing novel techniques in using animations for presenting and analyzing dynamic abstract data at a large scale. The pilot system CityStories system is expected provide a novel network platform for education, entertainment, and data analytics. It will engage general users such as students, teachers, journalists, bloggers, and many others in web information visualization and study. Results of this research will be disseminated through publications, the World Wide Web, and collaborations with researchers and analysts. The project web site (http://coitweb.uncc.edu/~jyang13/narrativeanimation/narrativeanimation.htm) will include research outcomes, publications, developed software, videos, and datasets for wide dissemination to public.
DATE: -
TEAM MEMBERS: Ye Zhao
resource project Public Programs
The Dynamic Earth: You Have To See it To Believe It is a public exhibition and suite of programming designed to educate and excite K-8 students, teachers, and families about weather and climate science, plate tectonics, erosion, and stream formation. The Dynamic Earth program draws attention to the importance of large-scale earth processes and the human impacts on these processes, utilizing real artifacts, hands-on models, and NASA earth imagery and data. The program includes the exhibition, student workshops, family workshops, annual professional development opportunities for classroom teachers, innovative theater shows, lectures for adults by visiting scientists, and interpretive activities. The Montshire Museum of Science has partnered with Chabot Space and Science Center (CA) and the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (NH) on various components. The project has broadened our internal capacity for providing quality earth science programming by greatly expanding our program titles and allowing us to create hands-on materials for use by our educators and to loan to schools in our Partnership Initiative. Programming developed during the grant period continues to reach thousands of students and teachers each year, both on-site and as part of our rural outreach efforts.
DATE: -
TEAM MEMBERS: David Goudy Greg DeFrancis
resource project Exhibitions
A team from Michigan State University, in partnership with six science, art-science, and art museum venues around the country and with the assistance of researchers at Georgia Institute of Technology, is implementing an EAGER project to conduct ongoing experiments on the chemical precursors to life as exhibit experiences for visitors to these venues. The experiments, to be run over the course of several months as the exhibit travels around the country, expand on the 1950s' work of Stanley Miller and Harold Urey, which continues to stimulate new investigations and publications, including experiments being conducted on the International Space Station. The experiments/exhibits share key features across the three different kinds of venues, allowing the team to study and compare the impacts on the various publics of engaging them in real-time science experiments. Two major goals are (1) to explore new ways to attract public interest in science by performing in public settings previously untried experiments on the chemical precursors to life, and (2) to investigate how the context of different kinds of venues and their visitor characteristics affect how visitors interpret the experience and what they learn. The team is also exploring how various data visualization representations can be designed to foster public interest and understanding. The intent is to develop an approach that has potential applications to other STEM content domains and expanding the reach to broader public audiences.
DATE: -
TEAM MEMBERS: Michigan State University Robert Root-Bernstein Adam Brown Maxine Davis
resource project Media and Technology
Mission to Mars engages 6th-8th grade students in the science, engineering and careers related to Mars exploration. The program is led by the Museum of Science and Industry, Chicago, and includes as partners Challenger Learning Centers in Woodstock, IL, Normal IL and three NASA Centers (Jet Propulsion Laboratory, Marshall Space Flight Center, and Johnson Space Center). The project aims to:

Link, via videoconference, urban and rural middle school students from low income communities in an exploration of space science
Develop and launch programs that showcase NASA Center research
Enrich middle school curricula and promote learning about NASA’s space missions with experiences that inspire youth to pursue in NASA-related STEM careers.
Programs and products produced include:

3 videoconference program scenarios that highlight research being conducted at NASA Centers
Pre- and post-event curriculum materials designed for middle school classrooms
Teacher professional development workshops
Communication support for NASA professionals
iPad apps utilized during the program
Since the program launched five years ago, Mission to Mars has served 7,676 students. MSI seeks to provide opportunities for all learners, and works to remove barriers to participation in high-quality science learning experiences. Mission to Mars allows MSI to engage more Chicago Public Schools (where 86% of students are economically disadvantaged) in real and relevant science experiences that may lead to STEM careers.

As MSI’s CP4SMP grant comes to an end, the Museum has committed to continued delivery of the program through 2 Mission to Mars Learning Labs, offered to 6-8th grade school groups visiting on field trips. Live videoconferencing with JPL and Johnson will occur during roughly half of the sessions. Our Challenger Learning Center partners will integrate Mission to Mars activities, materials and iPad apps into their own Mars-themed programs. Together these efforts extend the transformative hands-on science experiences developed under the Mission to Mars grant to a whole new audience of middle school students and teachers.
DATE: -
TEAM MEMBERS: David Mosena
resource project Media and Technology
Journey to Space will be a large-scale traveling exhibition that simulates a journey to the International Space Station (ISS), allows visitors to explore the physical properties of low gravity environments, and introduces some of the engineering and technology that makes it possible to live and work in space. A collaborative project led by the Science Museum of Minnesota joined by the California Science Center and the three other members of the Science Museum Exhibit Collaborative, the exhibition will encourage museum visitors 1) to immerse themselves in the sights, sounds, and smells that astronauts experience traveling to, and living in, space; 2) to engage as problem solvers with some of the unique engineering challenges that must be solved to support living and working in space; and 3) to experience life aboard the International Space Station interpreted through the voices of engineers, scientists, and astronauts. In addition to the exhibition, the project will include a public website and a two-year youth program for underserved teens that will result in a three-day Celebration of Space Exploration Chautauqua aimed especially at underserved families in the Twin Cities metropolitan area. The exhibition will tour to twelve major science museums across North America and reach upwards of three and a quarter million families, adults, teachers, and students over six years.
DATE: -
TEAM MEMBERS: Eric Jolly Paul Martin J. Shipley Newlin