Crowdsourcing and citizen science help federal agencies to innovate, collaborate and discover. In this toolkit, you will learn how to design and maintain projects. You can also read through case studies and access additional resources related to communities that practice crowdsourcing and citizen science. The Citizen Science and Crowdsourcing Toolkit was released by the White House Office of Science and Technology Policy (OSTP) and the Federal Community of Practice for Crowdsourcing and Citizen Science (CCS).
Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States and many other countries, particularly in ecology, the environmental sciences, and related fields of inquiry. The goal of this report is to help government agencies and
The goal of "Communicating STEM -- Applying the Science of Science Communication to Natural History Media Products in Development/Production" is to bring standard methodology for media product development/production into better alignment with evidence-based best practices for science communication. Presentations in the professional development science strand at the Jackson Hole Wildlife Film Festival (JHWFF) conference will be curated to demonstrate how adhering to research-based communication strategies has been proven to increase knowledge retention in a lay audience and decrease instances of audience bias. The strand will present emerging methods for assessing media impact beyond simply the number of viewers, as well as in depth case studies examining evidence for measurable benefits to adopting science communication strategies. By establishing an international cohort of interdisciplinary professionals, and by recruiting ongoing engagement through dissemination of project deliverables through partner organizations and university programs, JHWFF will increase opportunities for cross-industry collaboration and provide media producers, STEM professionals and science communication experts with the resources and network necessary for informed, effective public outreach through natural history and science media products. This conference strand is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Jackson Hole Wildlife Film Festival (JHWFF) is a premier international industry conference for natural history media professionals. This project will establish a cross-industry, interdisciplinary professional development science strand in the upcoming 2015 JHWFF conference. The goal is to advance interdisciplinary collaborations between STEM professionals, science communication experts, media producers, and students/early career professionals. The strand will explore examples of successful science/media collaborations, and increase discourse on best practices for public engagement at the intersection of STEM research, empirically-proven communication methods, and media content for diverse audiences. The project is divided into two phases: Phase I involves the work at the conference; Phase II will provide free online access to edited videos of program sessions made broadly available through partner organizations and institutions, and promoted via social networking, cohort groups, and online blogs. The collaborating organizations (American Association for the Advancement of Science, LifeOnTERRA, and Participant Media), complemented by a broad group of expert advisors, will extend the capacity of the project, facilitate access to stakeholders, and recruit broader participation in both phases of the project. Dr. Louis Nadelson, Director of the Center for the School of the Future at Utah State University, will conduct external evaluation.
On April 25, 2015, a devastating M=7.8 earthquake occurred approximately 80 km to the northwest of the Nepalese capital of Kathmandu. At the location of this earthquake the India plate is converging with Eurasia driving the uplift of the Himalayan mountain range. This RAPID award will enable the expansion and updating of a planned television documentary (The Himalaya Connection) about earth science research in Nepal, Bangladesh, India, and Mongolia from a half-hour to a one-hour show, in order to incorporate the Nepal earthquake and the lessons learned for making the region safer from natural hazards. The earthquakes occurrence provides a rare educational opportunity to increase the impact of new scientific information about earth processes while the disaster remains fresh in the global public consciousness. Using footage of scientists doing field research and related landscape, cultural scenes, and interviews filmed over the past several years under several NSF-funded projects, the producers will build on the opening created by the earthquake and its aftermath to incorporate lessons learned from this event into a deeper understanding of the forces at work and their wider impact on the region, and the scientific research behind this knowledge. Because The Himalaya Connection was already in post production, the film can be revised and completed fairly quickly and distributed soon enough to take advantage of the recent information about Nepal that has been so widespread in the global media. The documentary's primary audience is television viewers watching PBS in North America; the film will also be distributed for international broadcast. The filmmakers are Doug Prose and Diane LaMacchia of Earth Images Foundation, award-winning producers of earth science television documentaries. Activities under this RAPID project will involve post-production, mastering, and distribution of the documentary.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
Despite strong efforts by many people and institutions and a deep, ongoing commitment from the National Science Foundation, progress remains uneven and slower than desired with respect to broadening participation of people from all parts of society in the science, technology, engineering, and mathematics (STEM) fields. The broadening participation challenge will become even more urgent with increasing demographic and socioeconomic changes underway in our nation. Through this conference and workshop grant, the Association of Science-Technology Centers (ASTC) will convene a group of diverse thought leaders from across higher education, profit, non-profit, K-12 and informal STEM education sectors for one day of brainstorming and prioritizing possible ideas, strategies, and actions that could be aggressively pursued by broadening participation initiatives. The findings of this workshop could support ongoing, field-wide discussions about the next generation of projects and efforts to address issues of underrepresentation in STEM. This workshop will build upon a foundation of existing NSF programs and funded projects and will draw upon ongoing efforts by ASTC's Center for Advancement of Informal Science Education (CAISE) to address broadening participation challenges in informal STEM learning environments. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Inclusion Across the Nation of Communities of Learners that Have Been Underrepresented for Diversity in Engineering and Science (INCLUDES) Leadership Workshop will engage up to 55 local and non-local participants from the higher education, profit, non-profit, K-12 and informal STEM education sectors that have been selected for their extensive but varied experiences with efforts to broaden participation in STEM. Before the workshop, participants will prepare for the plenary talks, panel presentations, and breakout session discussions by reading selected literature about effectively scaling innovations, collective impact strategies, catalytic innovations, and other related theory. Specific goals of this one-day workshop are 1) to consider potential scalable high-impact innovations in STEM education to assure success for all people across the nation; and 2) to generate ideas, strategies, and actions that could substantially alter the current landscape and potentially achieve a transformative change for inclusion. ASTC proposes to disseminate the workshop findings to worksop participants, the broader communities to which participants belong, and even the National Science Foundation. A workshop synthesis report and other content generated at the workshop (speaker slides, presentation video, graphic documentation to name a few) will reside at ASTC's informalscience.org website. ASTC proposes an extensive communications media strategy that will draw stakeholder attention to these resources and support field-wide discussion and action around broadening participation.
This virtual conference proposal would bring together NSF researchers and their media partners who worked collaboratively on previous NSF projects involved with communicating research to public audiences (the now archived CRPA program). The goal of the conference to is examine successful practices and lessons learned and aggregate the findings in a manner that can productively inform and support current and future efforts of this kind. The key objectives of the work will be to identify approaches that broaden reach, increase the effectiveness of researcher/outreach organizational partnerships, and make recommendations for amplifying the strategic impact of these projects. Prior to the conference the PI will conduct a multiphase process of document review, online interviews, and questionnaires. Two virtual workshops will be conducted with a subset of previous grantees and their media partners noted for effective collaboration and outcomes. The first workshop will have participants sharing findings on project strengths and areas needing improvement based on past experience. They will identify possible generic tools and a framework that could be shared across projects. The second workshop will focus on the identified successful strategies might be implemented more widely. The broader impacts of this multi-component conference will help future grantees better understand, expand, and work more strategically with their outreach partners.
The University of Pittsburgh's Center for Learning in Out-of-School Environments, the Carnegie Museum of Natural History, and the Robotics Institute at Carnegie Mellon University are building an open access cyberlearning infrastructure that employs super high-resolution gigapixel images as a tool to support public understanding, participation, and engagement with science. Networked, gigapixel image technology is an information and communication technology that creates zoomable images that viewers can explore, share, and discuss. The technology presents visual information of scientifically important content in such detail that it can be used to promote both scientific discovery and education. The purpose of the project is to make gigapixel technology accessible and usable for informal science educators and scientists by developing a robotic imaging device and online services for the creation, storage, and sharing of billion-pixel images of scientifically important content that can be analyzed visually. Project personnel are conducting design activities, user studies, and formative evaluation studies to support the development of a gigapan technology platform for demonstration and further prototyping. The project builds on and leverages existing technologies to provide informal science education organizations use of gigapixel technology for the purpose of facilitating three types of activities that promote participatory learning by the public--Public Understanding of Science activities; Public Participation in Scientific Research activities; and Public Engagement in Science activities. The long-terms goals of the work are to (1) create an accessible database of gigapixel images that informal science educators can use to facilitate public-scientist interactions and promote participatory science learning, (2) characterize and demonstrate the affordances of networked gigapixel technologies to support socially-mediated, science-focused cyberlearning experiences, (3) generate knowledge about how gigapixel technology can enable three types of learning interactions between scientists and the public around visual data, and (4) disseminate findings that describe the design, implementation, and evaluation of the gigapixel platform to support participatory science learning. The project's long-term strategic impacts include guiding the design of high-resolution images for promoting STEM learning in both informal and formal settings, developing an open educational resource and science communication platform, and informing informal science educators about the use and effectiveness of gigapixel images in promoting participatory science learning by the public.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
This is the final report of the Open University’s RCUK-funded Public Engagement with Research Catalyst, ‘An open research university’, a project designed to create the conditions in which engaged research can flourish. The report describes an evidence-based strategy designed to embed engaged research within the University’s strategic planning for research and the operational practices of researchers. This programme of organisational change was informed by action research, working collaboratively with researchers at all levels across the institution to identify and implement strategies that
DATE:
TEAM MEMBERS:
Richard HollimanAnne AdamsTim BlackmanTrevor CollinsGareth DaviesSally DibbAnn GrandRichard HoltiFiona McKerlieNick MahonyNick Mahony
Advances in genomics are rapidly increasing our understanding of not only the human body, disease and health-related issues but how humans and other species interact and respond to changing environments. Genomics represents a scientific frontier that connects with individuals and families at the most personal level, with the potential to shape the future of human healthcare. However, advances in genomics and their implications for personalized medicine are far out-pacing public awareness and knowledge. The Connecticut Science Center and the University of Connecticut partnered under a National Science Foundation funded collaboration between Dr. Rachel O'Neill, UCONN, and Dr. Hank Gruner, Connecticut Science Center, and the National Center for Science & Civic Engagement to engage the public in developing a conceptual understanding of genomics.
DATE:
-
TEAM MEMBERS:
Connecticut Science CenterRachel O'NeillHank Gruner
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.