Lincoln Park Zoo will upgrade and make freely available ZooMonitor, a scientific data collection tool, which currently exists in a pilot version, for monitoring the behavior of animals in zoos and aquariums, . ZooMonitor will contain modules for tracking animal behavior and body condition and for conducting data analysis. The zoo will also integrate a platform for securely storing an institution's data. With these modifications, ZooMonitor will be rigorously tested by industry partners, translated for both Apple and Android devices, and made available for free public download. ZooMonitor will enable any zoo or aquarium, regardless of collection size, budget, or number of staff, to develop a routine monitoring program—improving the lives of hundreds of thousands of animals across the country and around the world.
This paper was presented at the 122nd ASEE Annual Conference and Exposition in June 2015, by the Boeing Company, the University of Washington, College of Education LIFE Center, and the City University of Seattle. Abstract Skills-based volunteerism programs can provide technical employees effective and meaningful opportunities to utilize, develop, and transfer their skills while contributing to their companies’ community engagement objectives in K-12 education. While many companies encourage their employees to engage in education-related volunteerism, these efforts are often one-off events
Over recent years, there has been much discussion of the status of science communication as a discipline, as a field of empirical research and theoretical reflection. In our own contributions to that discussion, we have tended to raise questions about the possibilities of this ‘emerging discipline’ (Trench & Bucchi 2010). We have some-times drawn attention to the marks of immaturity—notably, the relatively underdeveloped state of theory in the field.
But when a major international academic publisher commissions an anthology of ‘major works’ in our field, we can surely say that science
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
This Pathways project will develop and evaluate a new model for a STEM career exploration program for at-risk Hispanic youth and their families in New Mexico where 46% of the population is Hispanic. The target audience includes Hispanic youth incarcerated in juvenile detention centers. The Hispanic Communications Network will partner with the Juvenile Justice Division of the New Mexico Children, Youth, and Families Department, Youth Development Inc.; and Youth Works in Santa Fe. STEM professionals from Los Alamos and Sandia labs and private sector companies in New Mexico will participate as role models. The evaluation findings will add to the knowledge base about strategies to increase interest and engagement in pursuing STEM careers among hard-to-reach Hispanic audiences including low income families, gang members and incarcerated youth. The project design includes using two main strategies: family evenings with STEM role models; and a social media and Facebook contest focusing on Green Jobs of the Future. The evaluation will use a mixed-methods approach for gathering data including brief questionnaires after the family evenings, pre-and past-activity surveys, observations, and telephone and online surveys. The evaluation will provide ongoing feedback to the project team on how well the strategies are working. The project will hold 8 family nights, involve approximately 16 STEM professionals (role models), and projects about 16 edited media submissions by the youth teams. Toward the end of the project the evaluation will comment on the viability, efficacy and potential transferability of this model to other communities.
DATE:
-
TEAM MEMBERS:
Carlos AlcazarTrinity TreatAlliyah NoorLynn Dierking
This conference project features two gatherings of scientists, science educators, and other experts, as well as the development of a web site, list-serv, and related activities. During the gatherings, participants will explore how to build state-based programs that can engage people who are incarcerated in sustainability science programming. This work builds off of the success of the Sustainable Prisons Project, which has connected people who are incarcerated in Washington State with science through direct involvement in conservation research, and responds to calls from scientists and corrections staff interested in implementing similar programming in other states. The project will help advance the informal science education (ISE) field by potentially leading to high impact activities for a truly underserved population; building capacity among ISE professionals; and building knowledge and a replicable model of supporting non-traditional collaborations that serve the needs of people underrepresented in STEM.
Science STARS (Stars Tackling Authentic & Relevant Science) is an after-school program that will engage approximately 400 urban middle school girls in authentic inquiry-based scientific investigations and the creation of a science documentary that extends their research and situates their findings. The project has been piloted in Rochester, NY and will be expanded to sites in Lansing, MI and Seattle, WA. New elements have been added to enhance the project experience including the documentary video component, partnerships with local community outreach organizations, mentoring by local female scientists, leveraging embedded assessments to enhance the measurement of learning, and a conference and presentations to local stakeholders to showcase the work of the participants. Participants will meet during the school year plus three intensive weeks during the summer for a total of about 65 hours per year. A unique feature of this project is the use of pre-service teachers from local teacher preparation programs to facilitate the investigations. This in turn develops the capacity of pre-service teachers to implement and leverage inquiry-based learning in their practice. Project-level research will address questions of how models such as this encourage the development of positive science identities in girls and how situating science investigations in their community affects their understanding of science and local issues. The project evaluation will be conducted by Horizon Research and will focus on the quality of project activities, the quality of the project\'s research plan, and the impact on participants and pre-service teachers. Science STARS thoughtfully bridges formal and informal learning environments. While Science STARS largely situates its home base in schools in order to increase access to those who may not self-identify with science, the program is designed to capitalize on the unique affordances of informal settings and contribute to understanding how informal science education can be used to nurture positive science identities for urban middle school girls.
The 2009 International Year of Astronomy coincides with the dimming and brightening of a variable star that can be seen with the naked eye. The American Association of Variable Star Observers and the Adler Planetarium and Astronomy Museum are organizing a new citizen program called STARS (Science Through Astronomical Research) that engages 8,000 amateur astronomers and non-astronomers in measuring brightness changes in the star Epsilon Aurigae, analyzing their observational data, and developing and testing their own explanatory hypotheses. The goals of the project are to increase public understanding of science by involving citizens in active research on an accessible, yet enigmatic astronomical phenomenon, and disseminate lessons learned to other citizen science programs. A mixed methods evaluation study is monitoring the implementation and impact of the program. The project should (1) increase the number of non-astronomers who take up astronomy as a hobby, (2) increase the number of amateur astronomers who participate in other citizen science-related astronomical activities (for example, sky surveys), and (3) increase the number of non-science oriented citizens who become more interested in science. A research study is investigating how a large-scale informal citizen science project changes public understanding of scientific inquiry.
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
OUTSIDE: Over Under and Through: Students Informally Discover the Environment will focus on conducting a pilot study of our informal environmental education nature program designed for underrepresented middle school students in Mississippi. We have partnered with the University of Southern Mississippi's (USM) well-established Biological Sciences Learning Center (BSLC) and newly developed Lake Thoreau Environmental Center (LTEC), the Mississippi Museum of Natural Science and the Hattiesburg Public School District (HPSD). We are focused on reaching two target populations of participants: future naturalists and underrepresented middle school students. During this pilot, we are training volunteer naturalists to lead engaging, inquiry-driven informal environmental education programs designed to immerse middle school students in nature. We have developed a training program for volunteer naturalists and captured patterns in learning and interactions between students and naturalists during OUTSIDE programming.
The Community Collaborative Rain, Hail and Snow (CoCoRaHS) network is an existing backyard citizen science project that is enhancing the research efforts of scientists and promoting climate literacy among the public by engaging volunteers in precipitation-monitoring activities. More than 14,000 volunteer citizen scientists of all ages in 50 states currently measure precipitation from their homes, schools, public areas and businesses using rain gauges, snow rulers and hail pads, and then post their data to the CoCoRaHS website. Building on this work, the current Broad Implementation project is enhancing CoCoRaHS' network and making it possible for more people from across the country to monitor precipitation. The enhancements include (1) installing a new generation of data entry, storage, management, analysis and visualization tools, (2) collecting evapo-transpiration data to improve scientists' water cycle models, (3) revising and creating new citizen science training materials (print and multimedia), (4) expanding national collaboration and outreach via integration of social networking and mobile device technologies, and (5) developing a standards-aligned K-12 education outreach component that has a national reach. Citizen scientists are being equipped and trained to be neighborhood climate data analysts and are provided with new tools for data analysis and inquiry learning. The enhancements will allow new collaborations between museums and science centers, targeted outreach to underserved audiences, and recruitment of thousands of new volunteers for the CoCoRaHS network. Through a partnership with the National Association of Conservation Districts, the project will conduct educational outreach to all 3,140 counties in the country. Anticipated results include increased numbers of people, particularly younger people, participating in precipitation-monitoring activities, and increased participant knowledge, skills, interest, and involvement in climate science and scientific inquiry. Building the project's capacity to involve 20,000-50,000 more volunteers across nation will increase the density of precipitation-monitoring stations, providing scientists with higher quality weather data.