We explored a long-standing community science partnership between the Science Museum of Virginia and Groundwork RVA, a local organization that connects youth with opportunities to enhance greenspaces in Richmond.
This article discusses the Youth in Science Action Club (SAC), which uses citizen science to investigate nature, document their discoveries, share data with the scientific community, and design strategies to protect the planet. Through collaborations with regional and national partners, SAC expands access to environmental science curriculum and training resources.
DATE:
TEAM MEMBERS:
Laura HerszenhornKatie LevedahlSuzi Taylor
resourceprojectGames, Simulations, and Interactives
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. The proposed project broadens the utility of Public Participation in Scientific Research (PPSR) approaches, which include citizen science, to support new angles in informal learning. It also extends previous work on interactive data visualizations in museums to encompass an element of active contribution to scientific data. To achieve these goals, this project will develop and research U!Scientist (pronounced `You, Scientist!')--a novel approach to using citizen science and learning research-based technology to engage museum visitors in learning about the process of science, shaping attitudes towards science, and science identity development. Through the U!Scientist multi-touch tabletop exhibit, visitors will: (1) interact with scientific data, (2) provide interpretations of data for direct use by scientists, (3) make statements based on evidence, and (4) visualize how their data classifications contribute to globe-spanning research projects. Visitors will also get to experience the process of science, gaining efficacy and confidence through these carefully designed interactions. This project brings together Zooniverse, experts in interactive design and learning based on large data visualizations in museums, and leaders in visitor experience and learning in science museums. Over fifty thousand museum visitors are expected to interact annually with U!Scientist through this effort. This impact will be multiplied by packaging the open-source platform so that others can easily instantiate U!Scientist at their institution.
The U!Scientist exhibit development process will follow rapid iterations of design, implementation, and revision driven by evaluation of experiences with museum visitors. It will involve close collaboration between specialists in computer science, human-computer interaction and educational design, informal science learning experts, and museum practitioners. The summative evaluation will be based on shadowing observations, U!Scientist and Zooniverse.org logfiles (i.e., automated collection of user behavior metrics), and surveys. Three key questions will be addressed through this effort: Q1) Will visitors participate in PPSR activities (via the U!Scientist touch table exhibit) on the museum floor, despite all the distractions and other learning opportunities competing for their attention? If so, who engages, for how long, and in what group configurations? Q2) If visitors do participate, will they re-engage with the content after the museum visit (i.e., continue on to Zooniverse.org)? Q3) Does engaging in PPSR via the touch table exhibit--with or without continued engagement in Zooniverse.org after the museum visit--lead to learning gains, improved understanding of the nature of science, improved attitudes towards science, and/or science identity development?
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.
The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
The widespread accessibility of live streaming video now makes it possible for viewers around the world to watch live events together, including unprecedented, 24/7 views of wildlife. In addition, online technologies such as live chatting and forums have opened new possibilities for people to collaborate from locations around the world. The innovation that the projects provide is bringing these opportunities together, enabling real-time research and discussion as participants observe and annotate live streaming footage; sharing questions and insights through live Q&A sessions; and explore data with interactive visualization tools. Scientists will support the community's research interests, in contrast with traditional models of citizen science in which communities support the work of scientists. This project will enable people from diverse backgrounds and perspectives to co-create scientific investigations, including participants who might not otherwise have access to nature. The evaluation research for this project will advance the understanding of practices that enable interconnected communities of people to participate in more phases of scientific discovery, and how participation affects their learning outcomes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. As such, this project will advance a new genre of Public Participation in STEM Research (PPSR). It will also advance scientific exploration using live wildlife cams and establish a database for long-term research to understand how bird behavior and reproductive success are affected by environmental change. This project aims to deepen public involvement in science, building on knowledge and relevance for STEM learning by creating an online learning environment that expands on traditional crowdsourcing models of PPSR in which participants collect data to answer questions driven by scientists. In this project, participants are involved in co-created research investigations, including asking questions, deciding what data are needed, generating data, looking for patterns, making interpretations, reviewing results, and sharing findings. The goals are to 1) create a system that involves the public more deeply in scientific research; 2) develop participants' science skills and interests; 3) increase participants' understanding of birds and the environment; 4) generate new scientific knowledge about wildlife; and 5) advance the understanding of effective project design for co-created PPSR projects at a national scale. Through iterative design and evaluation, the project will advance the understanding of the conditions that foster online collaboration and establish design principles for supporting science and discovery in online learning environments. Through scaling and quasi-experimental studies, the evaluation research will advance the understanding of how learning outcomes may be similar or different for participants engaging in different ways, whether they observe the cams and read about the investigation, process data as contributors, provide some input as collaborators, or join in most or all of the scientific process as co-creators. Despite the popularity of live wildlife cams, with millions of people watching hundreds of cams around the world, little research has been conducted on the use of live cams for collaborative work in formal or informal science education. The infrastructure and open-source framework created for this project will expand the capacity for online communities of people from diverse career backgrounds and perspectives to collaborative on solving personally meaningful questions and contribute to new knowledge. Using this project as a prototype, cam operators from around the world could build networks of cams, enabling future studies with broader scope for comparative biological studies and discoveries. Additionally, it will serve as a model for use in classrooms or for online communities exploring other scientific fields using live-streaming content in collaborative research. By involving scientists and participants from across society as collaborators and co-creators, this project can help increase public engagement with science, technology, and environmental stewardship while advancing the understanding of the natural world and informing public decision-making.
The Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) involves thousands of people of all ages in the observation and study of weather, climate and water resources. In CoCoRaHS, citizens of all ages help measure and report rain, hail and snow from their own homes, schools and businesses. These data are then efficiently collected via the internet, archived in a national database, and made immediately available to participants, scientists and the general public showing the fascinating patterns of precipitation from each passing storm (see http://www.cocorahs.org). The measurement of precipitation and the patterns, variations and impacts that result, open the door to creative study of our environment. It is the "lowest common denominator" of hydroclimatic exploration. In this project, data from the CoCoRaHS citizen science network will be shared with and utilized by NOAA partners to help monitor drought, to help detect local severe storms, to alert local authorities to developing flash flood situations, to provide "ground truth" for NOAA and NASA remote sensing technologies, and to provide verification for both local and national weather and climate forecast products.
In the project entitled "The GLOBE Program 2010: Collaborative Environmental Research at Local to Global Scales," the University Corporation for Atmospheric Research (UCAR) will improve the functionality of the GLOBE Program by providing: (1) new methods, tools, and services to enhance GLOBE Partner and teacher abilities to facilitate inquiry-based learning and student research, (2) initial pilot testing and assessment of student and teacher learning activities and events related to Climate Science research, (3) improvements in GLOBE's technology infrastructure and data systems (e.g. database, social networking, information management) to support collaborations between students, scientists, and teachers, and (4) development of a robust evaluation plan. In addition, the UCAR will continue to provide support to the worldwide GLOBE community, as well as program management and timely communication with program sponsors.
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE:
-
TEAM MEMBERS:
Julia ParrishMarco HatchSelina Heppell
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
While interest in citizen science as an avenue for increasing scientific engagement and literacy has been increasing, understanding how to effectively engage underrepresented minorities (URMs) in these projects remains a challenge. Based on the research literature on strategies for engaging URMs in STEM activities and the project team’s extensive experience working with URMs, the project team developed a citizen science model tailored to URMs that included the following elements: 1) science that is relevant to participants’ daily lives, 2) removal of barriers to participation, such as
The mixed methods randomized experimental study assessed a model of engagement and education that examined the contribution of SciGirls multimedia to fifth grade girls’ experience of citizen science. The treatment group (n = 49) experienced 2 hours of SciGirls videos and games at home followed by a 2.5 hour FrogWatch USA citizen science session. The control group (n = 49) experienced the citizen science session without prior exposure to SciGirls. Data from post surveys and interviews revealed that treatment girls, compared to control girls, demonstrated significantly greater interest in their
Through the NSF Innovation Corps for Learning Program, (I-Corps L), this project will develop ways to enable the SciStarter program to extend the promise of citizen science by connecting millions of citizen scientists with scientists in need of their help through formal and informal research projects. Citizen science is a fast growing field that engages the public in scientific inquiry through data collection projects and environmental monitoring using sensors, mini spectrometers, water testing kits and other tools. A challenge for the citizen science community has been access to the tools required to collect the types of data needed in citizen science projects. SciStarter facilitates broader participation in citizen science by reducing the barrier for volunteers to identify, acquire, and use the right scientific tools and instruments for each project. This I-Corps for Learning project will develop approaches to enable SciStarter to provide a larger number of citizen scientists with easier access to required and recommended instruments needed for meaningful participation in citizen science projects.
SciStarter aims to provide a holistic solution to the needs of citizen scientists that includes projects, support, and products such as training materials and consulting. SciStarter can be a catalyst in citizen science by connecting people to opportunities to engage and in lowering barriers to public participation in scientific research while creating a hybrid academic-consumer sustainability model. A central focus of this current effort will be establishing a sustainable and scalable means of enabling citizen scientists to obtain equipment and instruments in an efficient and cost-effective manner. The project will make use of elements already in place to expand the engagement of citizen scientists in new or multiple projects, to empower citizens in the process of citizen science, and to provide a useful, scalable and sustainable solution for scientists leading citizen science research projects. The extension of SciStarter will set the stage for greater inclusion of previously marginalized groups in citizen science activities and will extend to all forms of public engagement in science.