Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource research Media and Technology
Science Hunters is an outreach project which employs the computer game Minecraft to engage children with scientific learning and research through school visits, events, and extracurricular clubs. We principally target children who may experience barriers to accessing Higher Education, including low socioeconomic status, being the first in their family to attend university, and disability (including Special Educational Needs). The Minecraft platform encourages teamwork and makes science learning accessible and entertaining for children, irrespective of background. We employ a flexible approach
DATE:
TEAM MEMBERS: Laura Hobbs Carly Stevens Jackie Hartley Calum Hartley
resource research Media and Technology
The Extreme Ice Survey (EIS) is an exemplary case for examining how to effectively communicate scientific knowledge about climate change to the general public. Using textual and semiotic analysis, this article analyzes how EIS uses photography to produce demonstrative evidence of glacial retreat which, in turn, anchors a transmedia narrative about climate change. As both scientific and visual evidence, photographs have forensic value because they work within a process and narrative of witnessing. Therefore, we argue that the combination of photographic evidence with transmedia storytelling
DATE:
TEAM MEMBERS: Anita Lam Matthew Tegelberg
resource evaluation Public Programs
The purpose of the Science Center Public Forums project was to engage citizens with NOAA data about climate-related hazards, resilience strategies, and related policies. Forum modules about four climate-related hazards were created, and used as a part of forum programs at eight museums around the US. Evaluation findings are structured around three themes: 1) learning, 2) interest, engagement, and attitudes, and 3) educator outcomes. Data showed high levels of prior knowledge about environmental hazards and interactions between human and natural systems; resilience efforts; and the ways science
DATE:
resource project Media and Technology
Polar Literacy: A model for youth engagement and learning will foster public engagement with polar science. The project targets middle-school aged underserved youth and polar research scientists, with the goal to increase youth interest in and understanding of Polar Regions, and to hone researchers' science communication skills. The project will develop affordable and replicable ways of bringing polar education to informal learning environments, extend our understanding of how polar education initiatives can be delivered to youth with maximum effect, and design a professional development model to improve the capacity for Polar Region researchers to craft meaningful broader impact activities. Polar Literacy will create and test a model which combines direct participation by scientists in after-school settings, with the use of curated polar research data sets and data visualization tools to create participatory learning experiences for youth. Beyond the life of the project funding, many of the project deliverables (including kits, videos, and other resources) will continue to be used and disseminated online and in person through ongoing work of project collaborators.

Polar Literacy: A model for youth engagement and learning will advance the understanding of informal learning environments while leveraging the rich interdisciplinary resources from polar investments made by the National Science Foundation (NSF). The project's key audiences -- polar researchers, informal educators, and out-of-school time (OST) youth in grades 4-7 (ages 9-13) -- will connect through both place-based and internet-based experiences and work collaboratively to generate a flexible, scalable, and transferable education model. The project will 1) design OST kits and resource guides (focused on Polar Literacy Principles) and include "Concept in a Minute" videos designed to highlight enduring ideas, 2) provide professional development for informal educators, 3) synthesize a club model through adaptation of successful facets of existing informal learning programs, and 4) create Data Jam events for the OST Special Interest (SPIN) clubs and camp programs by modifying an existing formal education model. A research design, implemented at four nodes over three years, will answer three research questions to evaluate the impact of professional development on informal educators, as well as the impact of programs on youth, and the effectiveness of the model. In addition to the project team and collaborators who are informal education practitioners, an advisory board composed of experts in youth programming, informal education, and evaluation will guide the project to ensure that it advances the body of informal STEM learning research.

Polar Literacy is an Advancing Informal STEM Learning (AISL) Innovations in Development project in response to the Dear Colleague Letter: Support for Engaging Students and the Public in Polar Research (NSF 18-103). Polar Literacy is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. This project has co-funding support from the Antarctic section of the Office of Polar Programs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Janice McDonnell Oscar Schofield Charles Lichtenwalner Jason Cervenec
resource research Public Programs
This poster, which was presented in Alexandria, VA at the CAISE AISL PI meeting in February 2019, summarizes the Under the Arctic: Digging into Permafrost traveling exhibition developed for the Hidden World of Permafrost project.
DATE:
TEAM MEMBERS: Victoria Coats Matthew Sturm Laura Conner
resource research Public Programs
How does focusing on “community science literacy” change the role of an informal science learning center? This poster was presented at the 2019 NSF AISL Principal Investigators meeting.
DATE:
TEAM MEMBERS: Billy Spitzer
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase student motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by designing, implementing, and testing an afterschool internship program that will engage older youth in work-based learning experiences in in STEM fields. The new model program will link the resources and learning approaches of the Global Learning and Observations to Benefit the Environment (GLOBE) program to career academies where youth from populations underrepresented in STEM fields will gain direct experiences in data collection and analysis through student-led investigations in the geosciences and environmental studies. Two key outcomes of this project will be: (a) Development of a replicable model of an afterschool STEM internship program for informal STEM learning environments and schools across the nation, and (b) Development of a set of measurement tools and approaches that can assess and promote understanding regarding how youth think and feel about science and their possible future roles in science careers. Participating youth will master scientific practices and become immersed in science culture through opportunities to develop research projects, interact with scientists, and collaborate with fellow student-researchers. In the process, they will develop collaboration and communication skills, and gain an increased sense of identity and agency in science fields. They will also learn new strategies to attain their career goals.

In developing and testing the new model of an afterschool program focusing on STEM careers, the project will draw on both existing and emerging knowledge from three areas of inquiry: informal STEM learning, youth development, and work-based learning. The project will bring together theory related to work-based learning and apprenticeship to knowledge about informal STEM learning and youth development, addressing the needs of older youth as they transition to adulthood. The program will also explore the use of measurement tools that address workforce-related student learning goals in addition to social-emotional learning and STEM learning goals, adapting existing tools and developing new tools as needed. The result will be a replicable model for an afterschool, career-focused internship that facilitates STEM learning and identity, employing youth development principles, such as experiential learning, peer collaboration, adult mentoring, and meaningful contributions to the world beyond school. The project will use a mixed-methods approach to investigate four research questions: (1) What aspects of the program are most important for promoting the development of scientific practices, socio-emotional learning, and career skills? (2) How can afterschool informal science learning be designed to address the perceptions and needs of diverse groups, especially those from populations underrepresented in STEM? (3) How do youth make gains in developing facility with STEM practices, key social-emotional outcomes needed in work and civic life, and career development knowledge? And (4) How do we accurately measure development of scientific practices, socio-emotional learning and career skills? The project will develop pretest and posttest self-report measures to gauge program influence on social-emotional outcomes and career-related outcomes, and performance-based assessments and rubrics will be used to assess culminating science projects. Other factors contributing to the success of the new model will be examined through analysis of coach instructional logs, surveys, and questions, as well as participant observations, interviews, and focus groups. Project participants will be youth of ages 14-18 recruited from ten inner-city schools having large populations of students from groups underrepresented in STEM fields. Participants will meet in teams of approximately 14 interns for a total of 2.5 hours per week for 32 weeks. Each team will also meet an additional 4-6 times for weekend or overnight outings associated with their study sites.
DATE: -
TEAM MEMBERS: Manuel Alonso Cathy Ringstaff Svetlana Darche
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Research in Service to Practice project will study how visual immersion and interactivity in augmented reality (AR) affects visitors' engagement and understanding of science. The research involves creating different versions of an AR exhibit to communicate paleontology research from the La Brea Tar Pits to the general public. Different versions of the exhibit will be compared to learn how design choices for immersion and interactivity impact visitors' engagement and understanding of science. The result of this study should be a model to follow for similar public exhibits, as well as design principles that generalize to AR experiences for a broader range of informal learning environments. This project will also demonstrate and report on specific AR mechanisms that help visitors understand the scientific process and increase knowledge about paleontology research.

The study includes a user-centered design and evaluation process with both formative and comparative studies. This project investigates two high-level design factors for mobile AR: visual immersion and interactivity. These impact the learning experience and the development so extensively that multiple versions are seldom compared. These factors also have unique considerations for informal settings, such as how to balance immersion against situational awareness (e.g., 3D viewers reduce field of view). One goal of this project is to systematically compare qualitatively different AR designs that convey equivalent science content and study these tradeoffs empirically. The second goal is to leverage these findings to publicly release an AR experience that promotes engagement, increases understanding of science, and reduces scientific misconceptions. This research will also contribute to understanding usability and logistical issues for different AR designs for public, outdoor, informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Emily Lindsey Benjamin Nye Gale Sinatra William Swartout
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The uses of technologies in emergency management and public safety are emerging rapidly, but it could take years for school STEM curricula to catch up with the technologies that are already being deployed in the field. Informal learning environments, such as Teen Science Cafés, provide a compelling venue for youth learning about rapidly-developing STEM fields such as technology. The floods and devastation caused by Hurricane Harvey provide a timely learning opportunity for them. This project, in addition to developing new materials for learning about technologies, will provide much-needed baseline research on teens' understanding of technology, technology careers, and emergency preparedness. Leveraging the robust platform of the NSF-funded Teen Science Café, the Maine Mathematics and Science Alliance will build upon its existing partnership with Science Education Solutions to develop and implement a package of educational activities, tools, and resources for a Teen Science Café that is focused on community flood events and response, using Hurricane Harvey as a model and case study. The materials will focus on advances in sensor technology, data visualization, social media, and other mobile communication apps used to detect, monitor and respond to flooding and natural disasters. The package of materials will be embraced by 20 sites in Maine. The goal is to engage at least 600 youth in themed Cafés focusing on how technology was used to respond to Harvey and is being used to manage and respond to flooding more generally. An important related goal is to conduct baseline research on what teens currently know about the flood-related technologies, as well as what they learn about it from this experience derived from recent floods in Texas, Florida, and the Caribbean islands.

A research goal of our work was to collect baseline information on teens’ level of knowledge about the role of technology in responding to a variety of natural disasters. To our knowledge, the field has not developed measures of knowledge of this increasingly important domain. We developed a quick and easy-to-administer 10-item multiple-choice measure, which we presented as a “trivia game” to be done sometime during the 90-minute Café. We did not track pre- to post-café changes in knowledge, because the Cafés emphasized very different pieces of technology as well as different types of natural disasters. Rather, we wished to establish a starting point, so that other researchers who are engaged in ERT efforts with teens have both an instrument and baseline data to use in their work.

A sample of 170 youth completed the questionnaire. The average correct response rate was 4.2 out of 10, only slightly higher than the chance of guessing correctly (3 out of 10). This suggests teens have limited baseline knowledge of Emergency Response Technology and our Cafés therefore served an important purpose given this lack of knowledge. Indeed, for half of the questions at least one incorrect answer was selected more often than the correct answer! Note that there were no statistically significant correlations between age and gender and rates of correct answers.

Three things are clear from our work: 1) Youth need and want to know about the vital roles they can play by learning to use technology in the face of natural disasters; 2) Teens currently know little about the uses of technology in mitigating or responding to disasters; and 3) Teen Science Cafés provide a timely and relatively simple way of sparking interest in this topic. The project showed that it is possible to empower youth to become involved, shape their futures, and care for their communities in the face of disasters. We plan to continue to expand the theme of Emergency Response Technology within the Teen Science Café Network. Reaching teens with proactive messages about their own agency in natural disasters is imperative and attainable through Teen Science Cafés.
DATE: -
TEAM MEMBERS: Jan Mokros
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles