Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource research Professional Development, Conferences, and Networks
This Informal Learning Review article briefly recounts the activities of Center for Advancement of Informal Science Education's (CAISE) over three award periods, from 2007 through 2022. It includes links to key CAISE resources and event documentation. CAISE sunsetted its activities in early 2022 and passed the baton of leadership of the National Science Foundation (NSF) Advancing Informal STEM Learning (AISL) program resource center to REVISE- the Reimagining Equity and Values in Informal STEM Education center.
DATE:
TEAM MEMBERS: James Bell David Ucko
resource project Professional Development, Conferences, and Networks
Centering Native Traditional Knowledge within informal STEM education programs is critical for learning for Native youth. In co-created, place-based learning experiences for Native youth, interweaving cultural traditions, arts, language, and community partnerships is vital for authentic, meaningful learning. Standardized STEM curricula and Western-based pedagogies within the mainstream and formal education systems do not reflect the nature of Native STEM knowledge, nor do they make deep connections to it. The absence of this knowledge base can reinforce a deficit-based STEM identity, which can directly impact Native youths’ participation and engagement in STEM. Reframing STEM education for Native youth to prioritize the vitality of community and sustainability requires active consideration of what counts as science learning and who serves as holders and conduits of STEM knowledge. As highly regarded holders of traditional and western STEM knowledge, Native educators and cultural practitioners are critical for facilitating Native youths’ curiosity and engagement with STEM. This Innovations in Development project is Native-led and centers Native knowledge, voice, and contributions in STEM through a culturally based, dual-learning approach that emphasizes traditional and western STEM knowledge. Through this lens, a network of over a dozen tribal nations across 20 U.S. states will be established to support and facilitate the learning of Traditional and Western STEM knowledge in a culturally sustaining manner. The network will build on existing programs and develop a set of unique, interconnected, and synchronized placed-based informal STEM programs for Native youth reflecting the distinctive cultural aspects of Native American and Alaska Native Tribes. The network will also involve a Natives-In-STEM Role Models innovation, in which Native STEM professionals will provide inspiration to Native youth through conversations about their journeys in STEM within cultural contexts. In addition, the network will cultivate a professional network of STEM educators, practitioners, and tribal leaders. Network efforts and the formative evaluation will culminate in the development and dissemination of a community-based, co-created Framework for Informal STEM Education with Native Communities.

Together with Elders and other contributors of each community, local leads within the STEM for Youth in Native Communities (SYNC) Network team will identify and guide the STEM content topics, as well as co-create and implement the program within their sovereign lands with their youth. The content, practitioners, and programming in each community will be distinct, but the community-based, dual learning contextual framework will be consistent. Each community includes several partner organizations poised to contribute to the programming efforts, including tribal government departments, tribal and public K-12 schools, tribal colleges, museums and cultural centers, non-profits, local non-tribal government support agencies, colleges and universities, and various grassroots organizations. Programmatic designs will vary and may include field excursions, summer and after school STEM experiences, and workshops. In addition, the Natives-In-STEM innovation will be implemented across the programs, providing youth with access to Native STEM professionals and career pathways across the country. To understand the impacts of SYNC’s efforts, an external evaluator will explore a broad range of questions through formative and summative evaluations. The evaluation questions seek to explore: (a) the extent to which the culturally based, dual learning methods implemented in SYNC informal STEM programs affect Native youths’ self-efficacy in STEM and (b) how the components of SYNC’s overall theoretical context and network (e.g., partnerships, community contributors such as Elders, STEM practitioners and professionals) impact community attitudes and behaviors regarding youth STEM learning. Data and knowledge gained from these programs will inform the primary deliverable, a Framework for Native Informal STEM Education, which aims to support the informal STEM education community as it expands and deepens its service to Native youth and communities. Future enhanced professional development opportunities for teachers and educators to learn more about the findings and practices highlighted in the Framework are envisioned to maximize its strategic impact.
DATE: -
TEAM MEMBERS: Juan Chavez Daniella Scalice Wendy Todd
resource project Professional Development, Conferences, and Networks
The New York Hall of Science (NYSCI) will convene a two-day participatory design conference of to identify research and education opportunities in informal settings for supporting literacy concerning Artificial Intelligence (AI), especially for diverse and underserved youth whose communities are impacted by the bias in some AI processes. AI uses computer systems that simulate human intelligence. AI systems impact nearly every aspect of daily living, performing tasks underlying navigation apps, facial recognition, e-payments, and social media. AI can perpetuate inequities and biased outcomes in the culture at large. The conference will explore how to promote engagement and conceptual learning among youth about how AI works and what skills are needed to critically use and apply AI. The conference will also explore ways to support the interests of diverse and underserved children and youth in shaping AI and joining the growing STEM workforce that will use AI in their professions.

The conference will identify key features and needs with respect to AI literacy and explore the specific roles that informal learning can play in advancing AI literacy for youth in diverse and underserved communities. Participants in the conference will include designers, learning scientists, researchers, informal and formal educators, and science center professionals. Attendees will work in separate teams and as a group to explore and critique existing AI tools and learning frameworks, discuss lessons learned from promising AI literacy programs, and identify design principles and future directions for research. Specific attention will be paid to informal mechanisms of engagement, promising networks, and research-practice partnerships that take advantage of the unique affordances of informal learning and community services to accelerate AI literacy for historically excluded youth. The insights gained from this work will result in a set of research and programmatic priorities for informal institutions to promote AI literacy in culturally responsive ways. The resulting published guide and community events will broadly disseminate priorities and design principles generated by this convening to help informal learning institutions and community learning organizations identify both assets and priorities for addressing diversity, equity, access, and inclusion issues related to AI literacy.
DATE: -
TEAM MEMBERS: Stephen Uzzo Dorothy Bennett Anthony Negron
resource project Professional Development, Conferences, and Networks
Persistent racial injustices and inequities in the United States and in STEM fields underscore the need for creative, research-based approaches to address these concerns. In particular, creative approaches are needed for studying and addressing racial injustices and inequities in STEM education, where racial equity and STEM learning are both given careful and thoughtful consideration. This project focuses on supporting emerging scholars who have new ideas and approaches for approaching racial equity in their scholarship and work. This workshop, implemented as a series of sessions over the course of a year, will support early career scholars in STEM education and the learning sciences in preparing proposals to submit to the National Science Foundation. The workshop is designed to serve scholars who are within five years of obtaining their PhD and who have never before been principal investigator or co-principal investigator of a federally-funded grant. Participants will include early career scholars who focus their work on racial equity. Too often, such scholars have indicated that they have received little to no training on writing grant proposals.

Ten participants will be supported by the project through a year-long series of workshops that include different aspects of the grant writing process including reading through a solicitation, writing a narrative, and creating a budget. In addition to these workshop sessions, the project approach also considers the importance of a professional network and of mentoring, informed by a Communities of Practice theoretical framework and existing research on mentoring practices. As such, each early career scholar will be paired with a senior mentor in the field whose work is aligned with the mentee's. The outcomes of the workshop for early career scholars will include a complete or nearly complete proposal that is aligned with one of the programs within the NSF's Division of Research on Learning. The workshop will highlight strategies for developing CAREER proposals along with considerations for preparing proposals for other programs. More generally, the workshop will create a model for supporting and mentoring early career scholars in proposing STEM education projects centered in racial equity work and will be able to identify areas of need for successful grant proposal writing. All workshop materials will be made freely available to the general public.

The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project is also funded through the Advancing Informal STEM Learning (AISL), CS for All: Research and RPPs, and Innovative Technology Experiences for Students and Teachers (ITEST) programs.
DATE: -
TEAM MEMBERS: Christopher Wright Carrie Tzou Eli Tucker-Raymond
resource project Informal/Formal Connections
HBCUs are critical to producing a diverse and inclusive workforce as they graduate a disproportionate number of African American future STEM workers and STEM leaders. Although the National Science Foundation is fully committed to diversity and inclusion, there has been little research to determine why Historically Black Colleges and Universities are not fully participating in the NSF STEM educational research opportunities. The project will investigate the challenges, needs and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF). Participants will be recruited from 96 HBCUs that are eligible to apply for such funding and will include the wide range of college and university administration and faculty that are involved in the preparation of research projects and related applications for research funding. The investigation will focus primarily on the Division of Research on Learning in Informal and Formal Settings (DRL) within NSF. The investigation will: 1) determine the submission rate and funding success rate of HBCUs within the DRL funding mechanisms; 2) determine why a greater proportion of HBCUs are not successful in their applications of research or do not apply; and 3) determine what factors, such as institutional support, research expertise, and professional development, could lead to a larger number of research proposals from HBCUs and greater success in obtaining funding. The project has the potential to have significant influence on the national educational and research agenda by providing empirical findings on the best approach to support and encourage HBCU participation in DRL educational research funding programs.

This exploratory research project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs. The project has the following research questions: (1) What factors discourage participation of HBCUs in the DRL funding mechanisms and what are the best practices to encourage participation? (2) What approaches have been successful for HBCUs to obtain DRL funding? (3) What dynamic capabilities are necessary for HBCU researchers to successfully submit STEM proposals to NSF? (4) What changes would be helpful to reduce or eliminate any barriers for HBCU applications for DRL educational research funding and what supports, such as professional development, would contribute to greater success in obtaining funding? Participants will be recruited from the 96 eligible HBCUs and will include both individuals from within the administration (e.g., Office Sponsored Programs, Deans, VP, etc.) as well as from within the faculty. The research will collect variety of quantitative and qualitative data designed to support a comprehensive analysis of factors addressing the research questions. The project will develop research findings and recommendations that are relevant to faculty, administrators, and policymakers for improving HBCU participation in research funding opportunities. Results of project research will be widely disseminated to HBCUs and other Minority Serving Institutions (MSIs) through a project website, peer reviewed journals, newsletters, and conference presentations.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST), the Advancing Informal STEM Learning (AISL), and the Discovery Research PreK-12 (DRK-12) programs. These programs which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' and general public knowledge and interest in science, technology, engineering, and mathematics (STEM).
DATE: -
TEAM MEMBERS: Cynthia Trawick John Haynes Triscia Hendrickson Terry Mills
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this pilot and feasibility study is to increase participation in informal STEM learning in rural Idaho through Stories of Fire, a program based on personal narratives of wildland fire. Idaho is a rural state, with an average population of just 19 people per square mile, the fourth lowest population density in the United States. The state is experiencing increasingly severe wildfire, and effective responses to such environmental change require a better understanding of the underlying science. Contextualizing science learning, making connections between everyday lives and a sense of place can engage learners and bring about a better understanding of wildfire. This project will bring together a science communicator, a narratologist, a fire ecologist, and a specialist on emotions and public lands. They will work collaboratively with informal educators based in rural areas of Idaho underrepresented in STEM fields. Rural areas are rich in knowledge based on years of cumulative observations, cultural beliefs, and practices shared through community networks. This project builds on these rural assets while addressing the challenges rural populations face. The project addresses broadening participation in STEM through narrative practices that encourage more diverse ways of knowing, being, and representing science.

This research study will explore: 1) what mechanisms of narrative (storytelling) most effectively integrate individuals? personal experiences and accurate STEM content in fire science communication, and 2) what audience-centered approaches best facilitate narrative approaches to informal STEM learning. This project engages four levels of participants over four phases of research and programming: 1) The research team will interview and analyze the narratives of 40 Frontliners (e.g., wildland firefighters and evacuees) from the inland Northwest region with first-hand experience with wildfire. 2) They will conduct a narrative workshop to train 20 informal STEM Educators from across the state on audience-centered approaches that facilitate participant storytelling about fire. 3) Educators will pilot their own narrative-based informal science learning programs with program participants in their rural home communities across the state, 4) A professional podcaster will create two podcasts modeled on our research findings for public audiences reached through media.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teresa Cohn Leda Kobziar Jennifer Ladino Erin James
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This EAGER seeks to explore the state of research ethics in practice in science and, specifically, how ethics plays out in informal STEM institutions, through lenses of multiple cultural traditions and perspectives. By means of producing a documentary, Decolonizing Science, the project will engage scientists and informal STEM educators in considering how informal STEM institutions could re-envision their work to fundamentally embrace inclusivity and belonging. The exploratory process will challenge and inform informal STEM learning institutions and the scientists with whom they work to consider how to navigate contemporary social tensions, support research that values diverse perspectives, and promote decolonizing practices. A significant component of the project includes screenings, workshops, and difficult conversations, in conjunction with informal learning institutions that are already on the front lines of new language and knowledge creation. The project will be a collaborative process as participants' thoughts, views, and arguments will shape the project from the beginning. Once the film is made, collaboration will continue by engaging science-based practitioners at institutions that serve communities of color and that are invested in working towards greater diversity, inclusivity, equity, and access. Discussions related to the film's screenings will inform how informal learning institutions can radically re-imagine their work and their spaces, including teaching, curation, research, communication, and knowledge and literature production.

The film will explore the origins, creation, and evolution of Western science as an enterprise that can sublimate, marginalize and re-narrativize the practices, procedures, ethics, and contributions of the underrepresented people of color in science. Through focus groups, interviews, and facilitated discussions, this EAGER will document and share the interactions among scientists, informal STEM educators, and filmmakers as they explore how to practice more ethical science in communities of color, on their lands, and within their nations, as well as how science can be portrayed and enacted within informal STEM learning institutions. The project seek to challenge and shift both informal STEM learning institutions and the sciences, through a yet-untested, well-considered, and humane approach to ethical practices of science and their implementation in informal STEM learning institutions through a film and by envisioning possible futures.

This project is jointly funded by Directorate for Education and Human Resources/Advancing Informal STEM Learning Program, the Directorate for Social, Behavioral and Economic Sciences Ethical and Responsible Research program and the Directorate for Geosciences Education and Diversity program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kendall Moore Amelia Moore
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Informal/Formal Connections
Cities are facing new demands as their urban populations rapidly grow. Smart City initiatives are being developed to address issues of mobility, infrastructure, security, and safety, while enhancing the quality of life of citizens. One-size-fits-all solutions are not viable. Instead, the diversity of a city's residents, including life experiences, cultural backgrounds, needs, and behaviors, must be taken into account to achieve transformative, citizen-centered solutions. Engineers, scientists, policy makers, entrepreneurs, and thought leaders must be prepared to tackle future Smart City challenges, and address knowledge barriers in understanding the needs of citizens across age, occupation, financial standing, disability, and technology savviness. This National Science Foundation Research Traineeship (NRT) award to the Arizona State University addresses this need by training the next generation of MS and PhD students for careers in Smart Cities-related fields. The project anticipates training thirty-eight (38) MS and PhD students, including twenty-four (24) funded trainees, from the following degree programs: Human and Social Dimensions of Science and Technology; Public Affairs; Computer Science; Civil, Environmental, and Sustainable Engineering; Mechanical & Aerospace Engineering; and Applied Engineering Programs. In addition to trainees, it is envisioned that over 300 other MS and PhD students in STEM disciplines will participate in opportunities made available through this traineeship. The knowledge and technologies developed from this project will contribute toward improving the quality of life for all of society through interdisciplinary, citizen-centered Smart City solutions.

An integrated education-research-practice model focused on the technological, societal, and environmental research aspects of citizen-centered solutions for Smart Cities will be employed to instill trainees with transdisciplinary skills and knowledge through cross-disciplinary courses; experience with leading collaborative, use-inspired research projects; applied learning through internships with partners and teaching opportunities; research experiences through service learning and leadership; and entrepreneurial education. Trainees will pursue research thrusts in Citizen-Centered Design; Smart City Infrastructure and Dynamics; and Socio-Environmental Practices and Policies. These thrusts are embedded in integrative priority application areas of Transportation and Accessibility; Safety, Security, and Risk Reduction; and Engagement and Education. Research efforts will significantly advance data-enabled citizen engagement; urban informatics; Internet-of-Things technologies; inclusion and accessibility; urban infrastructure; transportation systems; cybersecurity; swarm robotics; urban sustainability; quality of life and equity for citizens; hazards management and risk reduction; and societal concerns and ethics of emerging Smart City technologies. Focused efforts will be made to recruit underrepresented minorities, women, and individuals with disabilities, in order to tap underutilized talent, equip them to address the needs of their communities, and increase involvement of these groups in Smart Cities-related fields.

The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Ram Pendyala Cynthia Selin Ann McKenna Troy McDaniel Gail-Joon Ahn Sethuraman Panchanathan