The Greensboro Children's Museum, in partnership with the University of North Carolina at Greensboro and Guilford County Schools, will develop and implement the "Grow It, Cook It, Eat It" project to study the impact of food systems literacy education on the knowledge and behavior of K-2 children in an underserved school. The project will bring food education to a local elementary school where museum educators will work alongside classroom teachers to create and deliver weekly lessons to 60 students based on sustainable gardening practices, kitchen efficacy, attitudes toward fresh, seasonal food, and behavior toward garden work and trying new foods. Participating elementary students will build the beginnings of a skills set that will empower them, and their families,to make smart food choices for a lifetime.
John J. Tyler Arboretum will develop visitor programming that will provide educational opportunities in its Edible Garden Center focused on the benefits of growing and eating fresh fruits and vegetables. The center will include a food gardening exhibit that addresses urban gardening issues such as raised beds, container gardens, rooftop gardening, holistic sustainable gardening practices and technologies, and traditional vegetable gardening techniques. Cooking demonstrations, healthy eating programs, and dedicated gardening activities will allow for hands-on learning about health and sustainability. The garden will also include a play space for children, art performances and art installations to create a visitor experience that is dynamic, educational and forward-thinking.
The L.C. Bates Museum will provide 1,700 rural fourth grade students and their families museum-based STEAM (Science, Technology, Engineering, Art, and Mathematics) educational programming including integrated naturalist, astronomy, and art activities that explore Maine's environment and its solar and lunar interactions. The project will include a series of eight classroom programs, family field trips, TV programs, family and classroom self-guided educational materials, and exhibitions of project activities including student work. By bringing programs to schools and offering family activities and field trips, the museum will be able to engage an underserved, mostly low-income population that would otherwise not be able to visit the museum. The museum's programming will address teachers' needs for museum objects and interactive explorations that enhance student learning and new Common Core science curriculum objectives, while offering students engaging learning experiences and the opportunity to develop 21st century leadership skills.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.
The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
Armory Center for the Arts will develop, deliver, and evaluate "Artful Connections with Science," an innovative new visual arts-science integrated curriculum for the fourth and fifth grade levels in the Pasadena and Los Angeles Unified School Districts. "Artful Connections with Science" will provide support to the education community at a critical juncture as California adopts the Next Generation Science Standards. It will also enable the center to build organizational capacity for the delivery of arts-integration curriculum in multiple districts, thus increasing sustainability and helping to improve lives through the power of art.
DATE:
-
TEAM MEMBERS:
Doris Hausmann
resourceprojectProfessional Development, Conferences, and Networks
Arkansas State University (ASU) Museum will offer engaging STEM (Science, Technology, Engineering, and Math) learning experiences for children, at-risk youth, and teachers through three years of membership in the Arkansas Discovery Network, a coalition of seven Arkansas museums that develops and shares children's exhibits. Membership in the network will entitle ASU to nine high-quality, hands-on, STEM-based exhibits that promote "learning by doing" and the needed training in their STEM programming for educators. ASU Museum staff will build substantially upon these exhibits by developing many new and engaging tours, gallery activities, and programs that ensure STEM content registers in learners. This project will enable the museum to offer exceptional experiences with the potential to change attitudes about the value of learning in the targeted audiences in Northeast Arkansas.
The Long Island Children's Museum, in partnership with the Westbury School District, will expand its Westbury STEM Partnership program to provide additional professional development and ongoing support for teachers, and experiential STEM (science, technology, engineering, and math) learning opportunities for both first- and second-grade students in their classrooms and at the museum. The program will support inquiry-based, hands-on STEM learning in a high-need school district neighboring the museum, provide professional development to teachers, bring students to the museum to experience exhibits and programs, and make the museum's education staff available to educators for mentoring and content support as they integrate new teaching strategies into their classrooms. The project will promote improved STEM teaching and student learning by supporting teachers in integrating inquiry-based teaching strategies, enriching experiential learning for students both in and out of the classroom, and strengthening local school and community partnerships.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
The Missouri Botanical Garden will work with six urban schools, to create new educational opportunities for teachers and students who use the garden's institutional research as a foundation for STEM Programming (Science, Technology, Engineering, and Math). Students in the program will focus on one of three core garden research themes: medicinal uses of plants, plants as a food source, or the ecological value of plants. Anchored by multiple field experiences at the garden and its satellite sites, follow up programming, and teacher professional development, the program will be aligned with state standards to address concerns with student proficiency in the STEM disciplines.
Science Museum of Minnesota will create three live theater productions highlighting current laboratory and field research studies of science issues with strong topical relevance to families with school-age children, school groups, and adult lifelong learners. Shows will align with the appropriate grade levels of the Minnesota Science Education Standards in three age levels: early elementary (grades 1–3), upper elementary and middle school (grades 4–8), and high school students and adult learners. The shows will be performed in daily rotation at the museum to entertain, inform, and challenge visitors to reflect on current science issues. Theater staff will disseminate the shows through various national conferences, websites, and professional associations, enabling colleagues nationwide to download the scripts free of charge and present topical science issues at their own museums.
The Museum of Innovation and Science will deliver hands-on STEM (Science, Technology, Engineering, and Math) experiences to underserved youth and their families in afterschool and out-of-school time in collaboration with the member libraries of the Mohawk Valley Library System. The museum will deliver three STEM programs, astronomy content, and tabletop experiment stations to library visitors at each of the 23 member libraries. This project will help bring STEM awareness and interest to audiences in groups typically underrepresented in the STEM fields.
The New York City Department of Education will build a digital gateway for students and teachers called “Project ECS@ESC: Encouraging Connections through STEM” at the Environmental Study Center. This will offer rich and engaging experiential environmental science programs for students and teachers at all grade levels. The project will develop a digital depository of educational materials and digital resources that connect instructional content and programs. Educators and students will access the instructional resources beyond the walls of ESC, facilitating STEM-focused inquiry experiences in the classroom and utilizing instructional materials, e-content, and digital resources. It will also create a digital depository using Springshare’s Libguides, an online content management system, to provide e-content focused on STEM topics and themes.