Visitors to the Science Museum of Minnesota provided feedback on the books, How Small Is Nano? and Is That Robot Real? in order to assess the books and their ability to impart knowledge of nanoscience. The visitors, 63 adults in all, read one of the books to the child or children accompanying them, then answered a series of questions about their experience including their interest in and enjoyment of the book they read, as well as the age appropriateness of the book. The report compares and contrasts the two books throughout.
The Science Museum of Minnesota conducted the StretchAbility program on January 25th, and February 1st, 2010, and the Children’s Museum of Houston conducted the program on November 10th, 14th, and 25th, 2009. A total of 20 paired adult and child groups provided feedback through a survey designed to measure their engagement with and comprehension of the activity. After the activity, evaluators targeted participating children 8 or younger who were verbal for the interview, and gave a survey to the child’s parent to complete. Paired surveys were used due to the lower verbal nature of the younger
SciGirls is a national outreach program of DragonflyTV supported by a grant from the National Science Foundation's Program for Gender Equity. SciGirls empowers PBS outreach professionals and science museum educators, often partnering with local youth organizations, educators and parents, to deliver hands-on science encouragement and career guidance to girls in their communities. SciGirls is based on existing standards-based DragonflyTV outreach resources, which teach scientific inquiry.
Sea Studios Foundation is developing a five-hour television-based project that will examine "Earth System Science," which will be produced in association with the National Geographic Society (NGS). Geologists, biologists, oceanographers, climatologists, social scientists and others are joining forces to understand the planet's rapidly changing environment. The series will follow the on-going research of these scientists as they investigate the links between Earth's geosphere, biosphere, hydrosphere and atmosphere. These programs are planned as the first season of an annual series on the topic. Educational outreach will include a hands-on traveling exhibit to be developed and tested by the Maryland Science Center; an Educator's Guide for print and electronic distribution to informal science centers and community organizations; a "resource toolkit" to augment the Educator's Guide and an Internet site hosted by NGS that provides links to existing and new environmental resources. The series content also will be integrated into several NGS venues including: National Geographic Today, the daily news program on the National Geographic Channel; National Geographic Magazine, which will create a "global report card" as an annual feature; and National Geographic for Kids magazine, which is distributed to children in grades three through six. The project advisory board includes: Richard Barber, Professor of Biological Oceanography, Duke University Robert Costanza, Professor of Zoology, University of Maryland Gretchen Daily, Interdisciplinary Research Scientist, Stanford University Robert Dunbar, Specialist in Global Environmental Change, Stanford University Habiba Gitay, Senior Lecturer, National Centre for Development Studies, Asia Pacific School of Economics and Management, Canberra, Australia Michael Glantz, Senior Scientist, the Environmental and Societal Impacts Group, National Center for Atmospheric Research John Katzenberger, Executive Director of Aspen Global change Institute Jane Lubchenco, Professor of Marine Biology, Oregon State University J. R. McNeill, Professor of History, Georgetown University Harold Mooney, Professor of Environmental Biology, Stanford University Steven Schneider, Professor of Environmental Biology and Global Change, Stanford University Brian Walker, Coordinator of the Commonwealth Scientific and Industrial Research Organization's Biodiversity Sector, Adelaide, South Australia
DATE:
-
TEAM MEMBERS:
Mark ShelleyTierney ThysDavid Ellisco
The Independence Seaport Museum will create "Boat Building: Art and Science," a 3,000-square foot permanent exhibit that is designed to educate visitors about the science of boat building and design. Concepts such as buoyancy, water displacement, turbulence and drag will be explored through interactives, maritime artifacts, models and oral histories of tradesmen. By using the principles identified by the Family Science Learning Research Project of the Philadelphia/Camden Informal Science Education Collaborative (PISEC), the exhibit will be user-friendly for families with young children. Visitor workstation topics may include boat building, floating, buoyancy, sails, wind and boat shape. Visitors will use science processes while learning through open-ended play and exploration. Creative programs for families and school groups, as well as curriculum materials will support the exhibit. A website and technical training manual will also be produced. Four phases of evaluation are planned, and include front-end analysis which will incorporate focus groups with children ages 7-12, and formative evaluation using prototypes of interactives. Remedial evaluation will be carried out once the exhibit opens, and summative evaluation will use tracking and exit interviews to assess learning and understanding. The estimated annual audience of over 130,000 visitors will be expanded by replicating and traveling various components to other maritime museums in partnership with the Association of Science and Technology Centers. Evaluation of traveling components will also be undertaken to determine if they present an appropriate model for maritime-based exhibits.
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.
The Museums of the Rockies will develop a 2450 sq. ft. exhibit titled Landforms/Lifeforms and complementary educational materials including teacher enhancement activities, outreach trunks, and other programming. The exhibit will serve as the pivotal experience for visitors as they engage the museum's theme One Place Through All Of Time and it serve to introduce all other permanent exhibit galleries. Using the important and spectacular geological and paleontological resources of the region and the museum's collections, the exhibit will bring to life the concept of the evolution and diversification of life in response to changing geological conditions from the Precambrian to the end of the Mesozoic. Visitors will experience the Northern Rocky Mountain Region and the life supported by that region over time. Critical thinking skills of visitors will be stimulated with the purpose of enhancing their overall science literacy. The exhibit is designed to promote adult-child interaction. Special attention is being given to attracting a rural audience. Complementary programming aimed at K-12 students and teachers will be developed. The content of these activities will address the goals set forth in Montana's systemic initiative and the Systemic Teacher Excellence Preparation program. The educational materials will also be shared with member museums in the Mid-Continent University Natural History Museum Consortium.
DATE:
-
TEAM MEMBERS:
Arthur WolfShelly WhitmanBeth MerrickBonnie Sachatello-SawyerSharon Horrigan
Communicating Ocean Sciences to Informal Audiences (COSIA) is an innovative project that creates unique partnerships between informal science education institutions and local colleges conducting research in ocean sciences, with an emphasis on earth, biological and geochemical sciences. The project enables over 100 undergraduate and graduate students that are enrolled in the Communicating Ocean Sciences college course to create engaging learning activities and teaching kits in conjunction with their informal education partners. Institutional teams include: Long Beach Aquarium and California State University-Long Beach; Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; Virginia Aquarium and Science Center and Hampton University; Liberty Science Center and Rutgers University; and Lawrence Hall of Science and University of California-Berkeley. Students learn valuable outreach skills by providing visiting families and children with classes, guided tours and interactive learning experiences. Deliverables include a three-day partner workshop, a series of COSIA Handbooks (Collaboration Guide, Informal Education Guide and Outreach Guide), an Informal Science Education Activities Manual and Web Bank of hands-on activities. Strategic impact will be realized through the creation of partnerships between universities and informal science education institutions and capacity building that will occur as informal science institutions create networks to support the project. It is also anticipated the evaluation outcomes will inform the field abut the benefits of museum and university partnerships. The project will impact more than 30,000 elementary and middle school children and their families, as well as faculty, staff and students at the partnering institutions.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This education project is a time sensitive opportunity related to the March 9, 2016 Total Solar Eclipse occurring in a remote part of the world located in Waleia in the Federated States of Micronesia, a U.S. affiliated Pacific Island nation. The path of totality is only 100 miles wide and passes through only a few Pacific Island nations ending in Hawaii. This project uses this unique phenomenon to educate a large US and international audience about solar science using multi-platforms with integrated video, social media, and public programs. Project deliverables include the production of a broadcast of the eclipse live from Waleia in the Federated States of Micronesia on March 9, 2016 making it accessible to hundreds of countries and millions of people around the world via satellite and live streaming on the Internet. Additional deliverables include on-site educational programs at science centers and planetariums as well as media resources for long-term use. These resources will enhance the interest and preparedness for additional public engagement when the 2017 eclipse occurs in the U.S. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in solar physics research by funding the construction of the world's largest solar telescope, the Daniel K. Inouye Solar Telescope which is slated to begin operations in late 2019 and operated by the National Solar Observatory. This new facility will revolutionize researchers' capability to study the Sun and its magnetic fields. This education project leverages that investment with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and worldwide through the Internet.
DATE:
-
TEAM MEMBERS:
ExploratoriumRobert SemperNicole MinorRobyn Higdon
Nationally, there is tremendous interest in enhancing participation in science, technology, engineering, and mathematics (STEM). Providing rich opportunities for engagement in science and engineering practices may be key to developing a much larger cadre of young people who grow up interested in and pursue future STEM education and career options. One particularly powerful way to engage children in such exploration and playful experimentation may be through learning experiences that call for tinkering with real objects and tools to make and remake things. Tinkering is an important target for research and educational practice for at least two reasons: (1) tinkering experiences are frequently social, involving children interacting with educators and family members who can support STEM-relevant tinkering in various ways and (2) tinkering is more open-ended than many other kinds of building experiences (e.g., puzzles, making a model airplane), because it is the participants' own unique questions and objectives that guide the activity. Thus, tinkering provides a highly accessible point of entry into early STEM learning for children and families who do not all share the same backgrounds, circumstances, interests, and expertise. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The project will take place in the Tinkering Lab exhibit at Chicago Children's Museum. The research will investigate how reflective interactions between parents and children (ages 6-8) during tinkering activities ultimately impact child engagement in STEM. Design-based research (DBR) is well-suited to the iterative and contextually-rich process of tinkering. Using a DBR approach, researchers and museum facilitators will be trained to prompt variations of simple reflection strategies at different time points between family members as a way to strengthen children's engagement with, and memory of these shared tinkering events. Through progressive refinement, each cycle of testing will lead to new hypotheses that can be tested in the subsequent round of observations. The operationalization of study constructs and their measurement will come organically from families' activities in the Tinkering Lab and will be developed in consultation with members of the advisory board. Data collection strategies will include observation and interviews; a series of coding schemes will be used to make sense of the data. The research will result in theoretical and practical understanding of ways to enhance STEM engagement and learning by young children and their families through tinkering. A diverse group of at least 350 children and their families will be involved. The project will provide much needed empirical results on how to promote STEM engagement and learning in informal science education settings. It will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children. This research is being conducted through a partnership between researchers at Loyola University of Chicago and Northwestern University and museum staff and educators at the Chicago Children's Museum.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.