RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
The University of Montana will create “Transforming Spaces” to foster a more inclusive, culturally responsive space for Missoula’s urban Indian population and to better meet the community’s needs. The project will explore cross-cultural, collaborative approaches to STEM and Native Science. In collaboration with Montana’s tribal communities, the museum’s education team and advisory groups will design and implement hands-on activities that engage visitors with Native Science. The project will engage tribal role models and partner with tribal elders to create a library of videos for tribal partners, K–12 schools, and organizations. The project will offer teachers professional development designed to fulfill the statewide mandate of Indian Education for All. The exhibit will connect Native and non-Native museum visitors, close opportunity and achievement gaps, and ensure that all Missoula children feel a sense of belonging in museums, higher education, and STEM.
The Westchester Children’s Museum will develop Full STEAM (Science, Technology, Engineering, Art, and Math) Ahead, an integrated, module-based sequence of hands-on STEAM workshops adaptable for both in-person and virtual teaching for high-need 2nd to 6th grade students at Thomas Cornell Academy in Yonkers, NY and Waterside School in Stamford, CT. Project activities include program development, preparation, delivery, and evaluation to create programs that are replicable and sustainable while leveraging the museum’s resources to demonstrate how it can support their communities in need during unprecedented times. Full STEAM Ahead anticipates reaching 300 students from low-income and economically disadvantaged families.
It is estimated that over 95% of all school children across the country are out of the classroom due to social distancing mandates in response to the COVID-19 pandemic. Almost overnight, families have had to develop and support new practices for learning at home as districts scramble to meet the academic, social and emotional needs of their communities. It is essential to collect data now to develop a deeper understanding of how schools and families are adapting to these changes and will continue to do so in coming weeks/months - the troubles they encounter, and the solutions they generate. Retrospective accounts may mask critical features of what was experienced, minimizing the country’s capacity to conceptualize and build more robust, equitable and transformative learning ecologies for the future. Emphasizing an equity approach to solution development, this research will document how families engage in creative practices to generate powerful learning based on local needs, values, contexts, and histories in this present crisis. It will address the following questions: (1) What resources are schools providing and how are parents navigating and extending these resources to sustain their child’s learning? (2) How are families exploring science and math concepts related to the pandemic? (3) How are parents and families learning to adapt (e.g. communication with teachers; broader social networks) and what challenges do they face (e.g. subscription costs; reliable Internet)? (4) How are digital resources for STEM, curated by the research team, utilized for learning?
Emergency school closures are exposing significant gaps in access to the Internet and communication devices, and the capacity of parents/caregivers and communities to capitalize on technology to sustain health-relevant learning in a time of crisis. This project will use a novel, remote-diary tool based on a smartphone-enabled data collection platform, to reach families across the country. Mobile-phone-enabled remote diary tools make it possible to reach families who are under-connected, not just those with robust technical infrastructure. The data collected will lay the groundwork for creating new socio-technical support systems informed by diverse families’ experiences, as the crisis unfolds. Approximately 200 parents with school age children (early and upper elementary grades) living at home will be recruited. This study and a subsequent virtual workshop with other researchers who are also using remote methods to study learning will help establish a broader research agenda to specify the conditions under which socio-technical systems productively augment a family’s capacity to innovate and learn when traditional co-located school settings disappear. It will advance our understanding of how human learning adapts to unexpectedly changed learning environments. This study draws on advances in remote data collection and new analytical tools for innovation in research design.
In July 2020, Dr. Brigid Barron and her team at Stanford University’s Graduate School of Education and the Joan Ganz Cooney Center convened a virtual workshop to mobilize a community of investigators to explore innovative methods for studying family and community learning during the pandemic. Participants included NSF RAPID-COVID grantees from Stanford University, University of Washington, and the University of Michigan.
This report summarizes the strategies and insights generated at this workshop so that they may be shared among a wider network of researchers, practitioners, funders, and
For both parents and educators, monitoring and adjusting their behaviors to ensure that children develop appropriate prosocial and learning behaviors is a complex balance between nurturance and limit setting. When these interactions are strained, negative or coercive cycles may emerge that delay appropriate development and exacerbate existing impairment. To disrupt the development of coercive cycles, adults must have the ability to accurately assess the quality of their interactions with children and integrate this information into personal change. Approaches to measuring these types of interactions will inform what we know about the mechanisms of child social, emotional, and learning development in STEM learning settings, and enable the creation of adaptive interventions for those moments when support is most needed. This project envisions a closed-loop intervention framework to promote a supportive and interactive environment around children. Smart wearables will sense interaction and responses between the children and their parents or educators, using embedded machine learning technology to recognize supportive behaviors. The perceived behaviors will be sent to a cloud server where adaptive interaction strategies will be identified from either online psychological consultation or artificial intelligence. These interaction strategies will then be provided to the parents and educators in the form of guidance cues to promote a supportive STEM learning environment around the children.
This planning project aims to understand the barriers and critical problems in the implementation of smart technology and psychological strategies to support adult-child interactions in STEM learning settings. The work will proceed by convening key stakeholders (parent organizations, formal educational institutions, and informal educational institutions) in a series of iterative discussions to produce a set of adult-child behavioral targets that are essential to children’s development of social, emotional, and learning skills. Further discussions will then identify mechanisms to enhance these behaviors, and reduce competing, less effective approaches. Qualitative thematic analysis of the discussions will be used to capture these behaviors and mechanisms. Then technologies will be developed to measure, provide feedback on, and improve these behaviors. These devices will be piloted with adult-child dyads. Audiovisual data collected by the devices will be human coded as well as processed by algorithms to vet the technological capacity of the devices to detect and respond to targeted behaviors. A series of debriefing interviews and surveys with adult-child dyads will be used to determine the feasibility, acceptability, and utility of the devices. The collected preliminary data will support the forming of critical technological and social science research questions that co-inform one another: questions about the social engagement between adults and children will drive the technical research, and what can be discovered via the technological research will open up new questions that can be posed about social engagement between children and adults. Adult-child interactions are key social factors that integrate to produce student social, emotional, and academic outcomes. Within our informal educational communities, our formal educational communities, and our familial communities it is essential to find the best mechanisms for measuring, providing feedback, and improving these interactions. This work thus seeks to advance a new approach to, and evidence-based understanding of, the development of STEM learning. This Smart and Connected Communities project is also supported by the Advancing Informal STEM Learning program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.
Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.
PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.
NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
Ruff Family Science is a project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. The project is utilizing a research and design process to create resources that meet the needs of families
The National Building Museum (NBM) contracted RK&A, Inc. to conduct a summative evaluation of the Why Engineering? distance learning program. The goal of the evaluation was to assess program operations and explore the extent to which the program achieved its intended outcomes for students and teachers.
How did we approach this study?
RK&A used three methodologies for the study: online program observations; student assessments administered immediately after the program; and telephone interviews with teachers. Observations were primarily used to gain a holistic understanding of how the
Digital Observation Technology Skills (DOTS) is a framework for integrating modern, mobile technology into outdoor, experiential science education. DOTS addresses longstanding tensions between modern technology and classical outdoor education by carefully selecting appropriate digital technology for educational purposes and by situating these tools in classical experiential pedagogy.
DATE:
TEAM MEMBERS:
R. Justin HoughamMarc NutterCaitlin Graham
AMNH will use NOAA weather satellite data to annotate 72 high definition (HD) video time-series global cloud cover visualizations using thermal infrared brightness temperature data acquired by five geostationary satellites and joined into global mosaics at half-hourly intervals. The HD visualizations will be used in informal and formal education activities and will be made available on the Web. These media pieces will be used for informal education activities at AMNH and 28 other informal science institutions (ISI) around the United States . The target population of visitors to subscribing ISIs is currently ten million and is projected to be over 15 million by the end of the grant. The HD visualizations will be used in formal settings, as well. Fifteen schools throughout New York City with large numbers of new English Language Learners will be targeted and professional development for teachers of ELL students will be provided through programs at AMNH as well. AMNH s effort focuses on weather and climate patterns that will be visible in the cloud-data visualizations. All viewers of the media will learn about general circulation patterns and changes in phase of water associated with the hydrologic cycle.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper