The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.
The Louisiana State Museum and Tulane University/Xavier University Center for Bioenvironmental Research and the University of Rhode Island Graduate School of Oceanography, along with several other research collaborators, designers, evaluators, and the Times-Picayune newspaper are partnering to develop a multi-pronged approach on educating the general public, school children, teachers and public officials on the STEM-related aspects of Hurricane Katrina and its implications for the future of New Orleans and other parts of the country. The major products will be an 8,500 square-foot semi-permanent exhibit, smaller exhibits for Louisiana regional libraries, a comprehensive Web site on hurricanes, a set of studies on informal learning, a case study for public officials about the relevance of science research to policy and planning, teacher workshops, and a workshop for interested exhibit designers from around the country. This project advances the field of informal science education by exploring how museums, universities, and their communities can work together to provide meaningful learning experiences on STEM topics that are critical to solving important community and national issues.
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickJohn MaedaYasmin Kafai
"Have You Spotted Me? Learning Lessons by Looking for Ladybugs" is an innovative citizen science project that targets children from Native American, rural, farming, and disadvantaged communities. While most citizen science efforts target teens and adults, this project enables youth ages 5-11 to contribute to the development of a major ladybug database. Adult mentors in youth programs introduce children to topics such as ladybugs, invasive species, biodiversity, and conservation. Youth not affiliated with a program may participate independently. Project deliverables include a self-contained education program, an Internet portal and project website, a dedicated corps of volunteers, and the largest, accessible biological database ever developed. The database is made more reliable by utilizing records accompanied by an identifiable data image as a certified data point. Partners include the NY State 4-H, South Dakota State 4-H, Migrant Worker Children's Education Program, Cayuga Nature Center, Seneca Nation Department of Education Summer Programs, Seneca Nation Early Childhood Learner Centers After School Program, and the Onondaga Nation After School Program. Strategic impact will be realized through the creation of a citizen science project that provides hands-on interactions, field experiences, and accessible data that creates unique learning opportunities for youth. It is estimated that nearly 10,000 youth will be impacted by this work.
DATE:
-
TEAM MEMBERS:
John LoseyLeslie AlleeLouis HeslerMichael CatanguiJohn Pickering
The Learning and Youth Research and Evaluation Center (LYREC) is a collaboration of the Exploratorium, Harvard University, Kings College London, SRI International and UC Santa Cruz. LYREC provides technical assistance to NSF AYS projects, collects and synthesizes their impact data, and oversees dissemination of progress and results. This center builds on the Center for Informal Learning in Schools (CILS) that has developed a theoretical approach that takes into account the particular strengths and affordances of both Out of School Teaching (OST) and school environments. This foundation will permit strengthening the potential of the NSF AYS projects to develop strong local models that can generate valid and reliable data that can guide future investment, design and research aimed at creating coherence across OST and school settings. The overarching questions for the work are: 1. How can OST programs support K-8 engagement and learning in science, and in particular how can they contribute to student engagement with K-8 school science and beyond? 2. What is the range of science learning outcomes OST programs can promote, particularly when in collaboration with schools, IHE's, businesses, and other community partners? 3. How can classroom teachers and schools build on children's OST experiences to strengthen children's participation and achievement in K-12 school science Additionally, the data analysis will reveal: 1. How OST programs may be positioned to support, in particular, high-poverty, female and/or minority children traditionally excluded from STEM academic and career paths; and 2. The structural/organizational challenges and constraints that exist to complicate or confound efforts to provide OST experiences that support school science engagement, and conversely, the new possibilities which are created by collaboration across organizational fields. Data will be gathered from surveys, interviews, focus groups, evaluation reports, and classroom and school data.
This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE:
-
TEAM MEMBERS:
James McginnisSpencer BensonScott Dantley
The proposal intends to develop software that, when combined with the OMNI device, produces a virtual touch sensation that allows the blind to "touch" surfaces such as Mars, Earth's Moon, etc. The experience is multimedia as users can get sight, sound, and touch at the same time. The proposal does a solid job of describing a well-constructed and well-designed plan. The collaborative group works to bring together a strong body of STEM material, a highly skilled project team, and a diverse audience to assess the material. The team brought together to implement the proposal is a good one and includes the Institute for Scientific Research, NASA IV and V Independent Verification and Validation, Facility Educator Resource Center, Alderson Broadus College, Davis & Elkins College, and the West Virginia Schools for the Deaf and Blind. Although NASA is a project partner, the reviewers encourage the project proposer to continue building direct NASA funding. For example, a NASA space grant may be a good dissemination vehicle in the future. Reviewers were impressed with the various project elements: the mobile unit, pre- and post- standards based lessons, hypothesis testing with immediate feedback. The evaluation and dissemination plans provide for effective and immediate impact on a statewide and national level. The project provides for broader impact as the multi-media tools will be of assistance to other groups of students with disabilities as well.
DATE:
-
TEAM MEMBERS:
Marjorie DarrahPatricia HarrisSharmistha RoyAmy BlakeRebecca Giorcelli
resourceprojectProfessional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
Twin Cities Public Television will produce six new episodes for the Dragonfly TV GPS (Going Places in Science) series in order to inform a mass audience of children, adults and educators about the revolutionary advances taking place in nanoscience and nanotechnology. The new programs will shine the DragonflyTV GPS spotlight on the network of science museums in the NISE Network, showcasing the new nanoscience programs and exhibits that are currently being developed. DragonflyTV, a weekly science television series targeted at children ages 8-12, presents children engaged in inquiry-based investigations, on-location in science centers across America. Each investigation will demonstrate the direct connection between learning experiences in science centers and the application of those lessons in everyday life. Each Nanoworld episode will apply the Dragonfly "Real Kids . . . Real Science" model, communicating both the scientific process and basic concepts in nanoscience. The DragonflyTV GPS will involve collaboration with the NISE Network, led by the Museum of Science in Boston, the Exploratorium, and the Science Museum of Minnesota. The episodes will be distributed by PBS Plus. Ancillary products will include an Educator's Guide, a Nanoworld poster, and a website featured on pbskids.org/go. Multimedia Research and will conduct formative and summative evaluations of the television production. Inverness Research will evaluate the collaborative process between TPT and the museum partners, and identify specific lessons learned by each group.
This pilot project establishes and implements a professional development model with teachers of Native American students by creating a culturally relevant science, technology, engineering and mathematics (STEM) teacher in-service model for 30 grade 4-6 teachers from schools from two nations in Utah. The in-service program relies on community advisory panels, current standards and best practices in science, mathematics and technology education, by implementing engineering and technology education activities as a means of teaching science and mathematics. The goal is to improve teacher preparation in science and mathematics for Native Americans by creating culturally relevant curriculum materials with the help of community advisory panels and providing each teacher participant with at least 100 hours of structured professional development. The long-range goal is to develop an in-service model that can be transported to other Native American nations and schools. STEM and education faculty, community teachers, parents and leaders, as well as, tribal elders are to work together to assure the professional development model and materials are developed in a culturally inclusive manner. The evidence-based outcome of this project is that Native American students effectively learn mathematics and science with the longer-term influence being improvement in student achievement.
DATE:
-
TEAM MEMBERS:
Kurt BeckerJames BartaRebecca Monhardt