The overarching purpose of the Climate Literacy Zoo Education Network is to develop and evaluate a new approach to climate change education that connects zoo visitors to polar animals currently endangered by climate change, leveraging the associative and affective pathways known to dominate decision-making. Utilizing a polar theme, the partnership brings together a strong multidisciplinary team that includes the Chicago Zoological Society of Brookfield, IL, leading a geographically distributed consortium of nine partners: Columbus Zoo & Aquarium, OH; Como Zoo & Conservatory, St. Paul, MN; Indianapolis Zoo, IN; Louisville Zoological Garden, KY; Oregon Zoo, Portland, OR; Pittsburgh Zoo & PPG Aquarium, PA; Roger Williams Park Zoo, Providence, RI; Toledo Zoological Gardens, OH, and the organization Polar Bears International. The partnership leadership includes the Learning Sciences Research Institute at the University of Illinois at Chicago, and the Earth System Science Center at Pennsylvania State University. The partnership is joined by experts in conservation psychology and an external advisory board. The primary stakeholders are the diverse 13 million annual visitors to the nine partner zoos. Additional stakeholders include zoo docents, interpreters and educators, as well as the partnership technical team in the fields of learning innovations, technological tools, research review and education practice. The core goals of the planning phase are to a) develop and extend the strong multidisciplinary partnership, b) conduct research needed to understand the preconceptions, attitudes, beliefs, and learning modes of zoo visitors regarding climate change; and c) identify and prototype innovative learning environments and tools. Internal and external evaluations will be conducted by Facet Innovations of Seattle, WA. Activities to achieve these goals include assessments and stakeholder workshops to inventory potential resources at zoos; surveys of zoo visitors to examine demographic, socioeconomic, and technology access parameters of zoo visitors and their existing opinions; and initial development and testing of participatory, experiential activities and technological tools to facilitate learning about the complex system principles underlying the climate system. The long-term vision centers on the development of a network of U.S. zoos, in partnership with climate change domain scientists, learning scientists, conservation psychologists, and other stakeholders, serving as a sustainable infrastructure to investigate strategies designed to foster changes in public attitudes, understandings, and behavior surrounding climate change.
In domains with multiple competing goals, people face a basic challenge: How to make their strategy use flexible enough to deal with shifting circumstances without losing track of their overall objectives. This article examines how young children meet this challenge in one such domain, tic-tac-toe. Experiment 1 provides an overviews of development in the area; it indicates that children's tic-tac-toe strategies are rule based and that new rules are added one at a time. Experiment 2 demonstrates that even young children flexibly tailor their strategy use to meet shifting circumstances
Constraints on learning, rather than being unique to evolutionarily privileged domains, may operate in nonprivileged domains as well. Understanding of the goals that strategies must meet seems to play an especially important role in these domains in constraining the strategies even before they use them. THe presente experiments showed that children can use their conceptual understanding to accurately evaluate strategies that they not only do not yet use but hat are more conceptually advanced than the strategies they do not use. In Experiment 1, 5-year-olds who did not yet use the min strategy
This project's aim is to understand collaboration, cooperation, and learning in the context of a large, distributed virtual organization consisting of children and teachers building web-based simulations and animations using the Scratch software. The PIs will study the nature and patterns of cooperation in the Scratch decentralized learning environment, establish principles to guide the development of systems that foster cooperative attitudes and behaviors, and develop strategies to cultivate computational-thinking capacities that are important for productive cooperation and problem-solving in virtual organizations. The Scratch community consists of over 400,000 registered members discussing, remixing, and reusing more than a million projects. The project is a collaborative project with researchers from MIT, Harvard, and the University of Pennsylvania drawn from computer science, psychology, child development, education, organizational science, and economics. Using a novel combination of experimental and ethnographic methods, the research will provide insights into how young people cooperate in virtual organizations, their attitudes and motivations related to cooperation, and their development of computational-thinking skills and capacities necessary for productive cooperation and creative learning. The researchers expect that the findings will contribute to the design and understanding of more effective virtual organizations, particularly in the areas of learning, education, and cooperative creation. The methods used include observational studies, design interventions, and field experiments. The test bed will be the Scratch community and the evaluations will be done by mining the online record of cooperation in the construction of new simulations and animations. The outcomes of the project will include an improved Scratch environment, design principles for the construction of distributed virtual organizations that encourage cooperation and co-construction of knowledge and artifacts, and new methods of teaching computational thinking in an engaging environment. The Scratch community of 400,000 members will be part of this work. This project is potentially transformative because of the engaging nature of this particular application, because of its applicability to similar virtual communities, and because of its promise to reach a diverse community of learners.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskJohn MaloneyYochai BenklerYasmin Kafai