In the project entitled "The GLOBE Program 2010: Collaborative Environmental Research at Local to Global Scales," the University Corporation for Atmospheric Research (UCAR) will improve the functionality of the GLOBE Program by providing: (1) new methods, tools, and services to enhance GLOBE Partner and teacher abilities to facilitate inquiry-based learning and student research, (2) initial pilot testing and assessment of student and teacher learning activities and events related to Climate Science research, (3) improvements in GLOBE's technology infrastructure and data systems (e.g. database, social networking, information management) to support collaborations between students, scientists, and teachers, and (4) development of a robust evaluation plan. In addition, the UCAR will continue to provide support to the worldwide GLOBE community, as well as program management and timely communication with program sponsors.
Public images of scientific researchers –as reflected in the popular visual culture as well as in the conceptions of the public- combine traditional stereotypic characteristics and ambivalent attitudes towards science and its people. This paper explores central aspects of the public image of the researcher in Greek students’ drawings. The students participated in a drawing competition held in the context of the ‘Researcher’s Night 2007’ realized by three research institutions at different regions of Greece. The students’ drawings reveal that young people hold stereotypic and fairly traditional
This study explored the influence of a Saturday Science program that used explicit reflective instruction through contextualized and decontextualized guided and authentic inquiry on K‐2 students’ views of nature of science (NOS). The six‐week program ran for 2.5 hours weekly and emphasized NOS in a variety of science content areas, culminating in an authentic inquiry designed and carried out by the K‐2 students. The Views of Nature of Science Form D was used to interview K‐2 students pre‐ and post‐instruction. Copies of student work were retained for content analysis. Videotapes made of each
Elementary school children are capable of reproducing sophisticated science process skills such as observing, designing experiments, collecting data, and evaluating evidence. An understanding of the nature of scientific knowledge requires more than teaching and learning the performance of these skills. It also requires an appreciation of how these actions lead to knowledge generation and shape its durable and tentative nature. Our understanding of activities that support the teaching and learning of the nature of scientific knowledge is still growing. This study compares how scientific
Archaeology education activities in informal science learning settings are an underutilized, but effective strategy for teaching science inquiry skills in socially and culturally relevant contexts. This project investigated the potential for archaeological content and inquiry strategies to help informal science learning institutions increase learning with diverse ISE audiences. The project was based on foundational research for the development of a national research framework for archaeology education and a plan for developing high-quality science learning opportunities for under-represented
DATE:
TEAM MEMBERS:
Michael BrodyJohn FisherJeanne MoeHelen Keremedjiev
In the United States, African Americans are underrepresented in science careers and underserved in pre-collegiate science education. This project engaged African American elementary students in culturally relevant science education through archaeology and thereby increased positive dispositions toward science. While imagining what the lives of their ancestors were like, students practiced scientific inquiry and used natural sciences to analyze archaeological sites. The project helped to improve science literacy among African American elementary students through archaeological inquiry and
"Have You Spotted Me? Learning Lessons by Looking for Ladybugs" is an innovative citizen science project that targets children from Native American, rural, farming, and disadvantaged communities. While most citizen science efforts target teens and adults, this project enables youth ages 5-11 to contribute to the development of a major ladybug database. Adult mentors in youth programs introduce children to topics such as ladybugs, invasive species, biodiversity, and conservation. Youth not affiliated with a program may participate independently. Project deliverables include a self-contained education program, an Internet portal and project website, a dedicated corps of volunteers, and the largest, accessible biological database ever developed. The database is made more reliable by utilizing records accompanied by an identifiable data image as a certified data point. Partners include the NY State 4-H, South Dakota State 4-H, Migrant Worker Children's Education Program, Cayuga Nature Center, Seneca Nation Department of Education Summer Programs, Seneca Nation Early Childhood Learner Centers After School Program, and the Onondaga Nation After School Program. Strategic impact will be realized through the creation of a citizen science project that provides hands-on interactions, field experiences, and accessible data that creates unique learning opportunities for youth. It is estimated that nearly 10,000 youth will be impacted by this work.
DATE:
-
TEAM MEMBERS:
John LoseyLeslie AlleeLouis HeslerMichael CatanguiJohn Pickering
This study of American adults’ attitudes towards children’s experiences in nature was based on survey data from 2,138 people who participated in an independently commissioned, online consumer survey in February 2010. The Encouraging Children’s Nature Experiences Scale (EC-NES) was created to assess adult attitudes and beliefs surrounding encouragement of children’s nature experiences. While a great deal of empirical research has already been undertaken to demonstrate the value and impact of these experiences, not all of the research has been adopted by the public. The EC-NES scale was designed
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:
Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders
To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS:
Missouri AfterSchool NetworkJeff Buehler
resourceprojectWebsites, Mobile Apps, and Online Media
SETAC is funded by the Lifelong Learning Programme of the European Union and emerges out of the need to undertake specific action for the improvement of science education. It regards science education as among the fundamental tools for developing active citizens in the knowledge society. SETAC draws on the cooperation between formal and informal learning institutions, aiming to enhance school science education and active citizenship looking further into the role of science education as a lifelong tool in the knowledge society. On the day of the project’s conclusion, 31 October 2010, after two years of work SETAC contributes the following products and results to the field: 1. “Quality Science Education: Where do we stand? Guidelines for practice from a European experience” This is the concluding manifesto that presents the results of the SETAC work in the form of recommendations for practitioners working in formal and informal science learning institutions; 2. “Teaching and Learning Scientific Literacy and Citizenship in Partnership with Schools and Science Museums” This paper constitutes the theoretical framework of the project and innovative ways of using museums for science education and develop new modes of linking formal and informal learning environments; 3. Tools for teaching and learning in science: misconceptions, authentic questions, motivation. Three specific studies, leading to three specific reports, have been conducted in the context of the project, looking in particular into notions with an important role in science teaching and learning. These are on: Children’s misconceptions; Authentic questions as tool when working in science education; Students’ attitudes and motivation as factors influencing their achievement and participation in science and science-related issues; 4. Activities with schools: SETAC developed a series of prototype education activities which were tested with schools in each country. Among the activities developed between the partners, two have been chosen and are available on-line for practitioners to use and to adapt in their own context. These are: The Energy role game, a role game on Energy invites students to act in different roles, those of the stakeholders of an imaginary community, called to debate and decide upon a certain common problem; MyTest www.museoscienza.org/myTest, which aims to encourage students to engage in researching, reflecting and communicating science-oriented topics; 5. European in-service training course for primary and secondary school teachers across Europe. The training course is designed in such a way as to engage participants in debate and exploration of issues related to science education and active citizenship. The course is open to school teachers, headteachers and teacher trainers from all EU-member and associate countries. Professionals interested can apply for a EU Comenius grant. All the products of the project as well as information about the training course are available at the project website, some of them in more than one languages: www.museoscienza.org/setac
Twin Cities Public Television will produce six new episodes for the Dragonfly TV GPS (Going Places in Science) series in order to inform a mass audience of children, adults and educators about the revolutionary advances taking place in nanoscience and nanotechnology. The new programs will shine the DragonflyTV GPS spotlight on the network of science museums in the NISE Network, showcasing the new nanoscience programs and exhibits that are currently being developed. DragonflyTV, a weekly science television series targeted at children ages 8-12, presents children engaged in inquiry-based investigations, on-location in science centers across America. Each investigation will demonstrate the direct connection between learning experiences in science centers and the application of those lessons in everyday life. Each Nanoworld episode will apply the Dragonfly "Real Kids . . . Real Science" model, communicating both the scientific process and basic concepts in nanoscience. The DragonflyTV GPS will involve collaboration with the NISE Network, led by the Museum of Science in Boston, the Exploratorium, and the Science Museum of Minnesota. The episodes will be distributed by PBS Plus. Ancillary products will include an Educator's Guide, a Nanoworld poster, and a website featured on pbskids.org/go. Multimedia Research and will conduct formative and summative evaluations of the television production. Inverness Research will evaluate the collaborative process between TPT and the museum partners, and identify specific lessons learned by each group.
The Peabody Museum of Natural History's program on Biodiversity and Vector-Borne Disease was successful in meeting all of its goals. The following is a summary of the program in terms of these goals. Goal 1: To build teacher capacity for bringing research in biodiversity and disease ecology to grades 5-11 in an engaging, inquiry-based style. A total of 64 teachers from Connecticut and 4 teacher-trainers from California, Texas, and Wisconsin participated in training institutes to learn about vector-borne diseases. All participating teachers successfully implemented most or all of the curriculum
DATE:
TEAM MEMBERS:
Minda BorunPeabody Museum of Natural History