Skip to main content

Community Repository Search Results

resource project Public Programs
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.

Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
DATE: -
resource project Public Programs
By engaging diverse publics in immersive and deliberative learning forums, this three-year project will use NOAA data and expertise to strengthen community resilience and decision-making around a variety of climate and weather-related hazards across the United States. Led by Arizona State University’s Consortium for Science, Policy & Outcomes and the Museum of Science Boston, the project will develop citizen forums hosted by regional science centers to create a new, replicable model for learning and engagement. These forums, to be hosted initially in Boston and Phoenix and then expanded to an additional six sites around the U.S., will facilitate public deliberation on real-world issues of concern to local communities, including rising sea levels, extreme precipitation, heat waves, and drought. The forums will identify and clarify citizen values and perspectives while creating stakeholder networks in support of local resilience measures. The forum materials developed in collaboration with NOAA will foster better understanding of environmental changes and best practices for improving community resiliency, and will create a suite of materials and case studies adaptable for use by science centers, teachers, and students. With regional science centers bringing together the public, scientific experts, and local officials, the project will create resilience-centered partnerships and a framework for learning and engagement that can be replicated nationwide.
DATE: -
TEAM MEMBERS: Dan Sarewitz
resource project Public Programs
In the project entitled "The GLOBE Program 2010: Collaborative Environmental Research at Local to Global Scales," the University Corporation for Atmospheric Research (UCAR) will improve the functionality of the GLOBE Program by providing: (1) new methods, tools, and services to enhance GLOBE Partner and teacher abilities to facilitate inquiry-based learning and student research, (2) initial pilot testing and assessment of student and teacher learning activities and events related to Climate Science research, (3) improvements in GLOBE's technology infrastructure and data systems (e.g. database, social networking, information management) to support collaborations between students, scientists, and teachers, and (4) development of a robust evaluation plan. In addition, the UCAR will continue to provide support to the worldwide GLOBE community, as well as program management and timely communication with program sponsors.
DATE: -
TEAM MEMBERS: Valerie Williams
resource project Public Programs
Be a 4-H Scientist! Materials in a Green, Clean World is an inquiry-based science curriculum focusing on concepts of materials; plastics; reuse, recycle, and reduce; and the work of scientists and engineers. It is designed to build foundational skills of science and engineering: observation, asking questions, sorting and classifying, and communicating. The curriculum contains six learning modules intended for delivery in out-of-school time facilitated by an educator (trained volunteers or program staff). Most modules also include a “Science At Home” activity which parents/other adults and children can do at home.
DATE:
TEAM MEMBERS: Jennifer Henderson Anne Stevenson Steven Worker Martin Smith Charles Malone Alexa Maile
resource evaluation Media and Technology
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners). Appendix includes logic model.
DATE:
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.

The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.

The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
DATE: -
TEAM MEMBERS: Kathryn Guimond Sarah Cohn Joseph Adamji Lauren Causey Shannon McManimon
resource project Public Programs
Non-Technical

Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.

Technical

This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE: -
TEAM MEMBERS: Mohamed Musavi Venkat Bhethanabotla Cary James Vemitra White Lola Brown
resource project Public Programs
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.

The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE: -
TEAM MEMBERS: Steven Stochaj Patricia Sullivan Luis Vazquez
resource project Public Programs
General Summary

Because of the siloed nature of formal educational curricula, students who opt out of STEM coursework, for whatever reason, lose the opportunity to engage with the domain of science almost entirely, thereby closing the door to the STEM workforce pipeline. This disproportionately impacts students of color and women. This project advances an alliance that consists of a consortium of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and local businesses. The project built around this alliance will leverage interdisciplinary spaces in the curriculum, particularly the humanities and social sciences, across academic levels, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life. The PIs establish a physical Community STEM Center as an anchoring institution for STEM engagement. This Center will be situated within the community that the alliance serves, bringing STEM opportunities and engagement to students instead of asking them to come where STEM education is currently provided. The activities enacted through the Community STEM Center will focus on enduring problems experienced by the communities, where students, community residents, teachers, and experts from higher education, industry and other community-based entities can come together to work on understanding them and developing evidenced centered advocacy as a means for addressing them. To facilitate the work at the Community STEM Center, the project creates a Community Ambassadors Program (CAP), leveraging participation across alliance members in partnership with the community. This Design and Development Launch Pilot will cultivate the necessary knowledgebase to develop a scalable model for implementation across diverse urban communities.

Technical Summary

This Design and Development Launch Pilot focuses on shifting the narrative of STEM education away from a solitary focus on formalized educational experiences and targets STEM content. This project develops and facilitates a parallel set of activities designed to engage under-represented students in learning how and why STEM is relevant to their lives, and approached through new and non-traditional educational dimensions. The five main objectives of this proposed pilot are to: (1) Develop a pilot alliance of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and industry;(2)Establish a physical Community STEM Advocacy Center as an anchoring institution for change embedded within the community that the pilot alliance serves; (3) Leverage interdisciplinary spaces in curricula, across academic levels, particularly the humanities and social sciences, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life; (4) Create a Community Ambassadors Program (CAP), leveraging participation across higher education pilot alliance members in partnership with the community; and (5)Conduct an evaluation of project initiatives and research regarding the usability and feasibility of a systemic approach to developing community-based, interdisciplinary pathways to broaden STEM participation pathways. Efforts to examine the impact of this community-based, interdisciplinary approach concentrates on the proximal outcomes related to STEM interest, self-efficacy and identity. Data will be collected in pre/post format across our three constituent samples: 1) Community STEM Advocacy Center participants; 2) k-12 students; and, 3) postsecondary students. Analysis of data will be conducted through MANCOVAs to account for potential co-variation among construct scores. Qualitative data will also be collected to contextualize findings and enable the development of a rich case study. At least two observations will be conducted in the Community STEM Advocacy Center and the two classroom implementations to document engagement, participant interactions and level of STEM content.
DATE: -
TEAM MEMBERS: Kimberly Lawless Donald Wink Ludwig Carlos Nitsche Aixa Alfonso Jeremiah Abiade
resource project Public Programs
The Bay Area Regional Collaboration to Expand and Strengthen STEM (RECESS) is a regional, unified STEM continuum effort from preschool through graduate school and career. RECESS is based on successful collective impact efforts in other fields and employs a participatory action research (PAR) approach to broaden participation in STEM. In the PAR framework, youth and their families will help to define the issues and develop expertise about community needs through a shared research process.

RECESS introduces participatory action research as an innovative element to the collective impact social agency framework. The intent is to determine the extent to which the engagement and involvement of the students and communities targeted can effectively shape the function of the collective impact network of organizations.

During the two year planning phase, RECESS (a) conducts a comprehensive needs assessment and gap analysis; (b) establishes a functioning organization of stakeholders with a common agenda and governance model; and (c) develops a detailed action plan. It is a significant contribution to the body of knowledge on effective and innovative collective impact structures designed to promote STEM education and participation.
DATE: -
TEAM MEMBERS: Renee Navarro Bertram Lubin
resource project Public Programs
The Colleges of Science & Engineering and Graduate Education, and the Metro Academies College Success Program (Metro) at San Francisco State University in partnership with San Francisco Unified School District and the San Francisco Chamber of Commerce develop an integrated approach for computing education that overcomes obstacles hampering broader participation in the U.S. science, technology, engineering and mathematics (STEM) workforce. The partnership fosters a more diverse and computing-proficient STEM workforce by establishing an inclusive education approach in computer science (CS), information technology, and computer engineering that keeps students at all levels engaged and successful in computing and graduates them STEM career-ready.

Utilizing the collective impact framework maximizes the efficacy of existing regional organizations to broaden participation of groups under-educated in computing. The collective impact model establishes a rich context for organizational engagement in inclusive teaching and learning of CS. The combination of the collective impact model of social agency and direct engagements with communities yields unique insights into the views and experiences of the target population of students and serves as a platform for national scalable networks.
DATE: -
TEAM MEMBERS: Keith Bowman Ilmi Yoon Larry Horvath Eric Hsu James Ryan
resource research Media and Technology
The mixed methods randomized experimental study assessed a model of engagement and education that examined the contribution of SciGirls multimedia to fifth grade girls’ experience of citizen science. The treatment group (n = 49) experienced 2 hours of SciGirls videos and games at home followed by a 2.5 hour FrogWatch USA citizen science session. The control group (n = 49) experienced the citizen science session without prior exposure to SciGirls. Data from post surveys and interviews revealed that treatment girls, compared to control girls, demonstrated significantly greater interest in their
DATE:
TEAM MEMBERS: Barbara Flagg