Since distance education has evolved over time and continues to evolve, and most recently been influenced and challenged by the COVID-19 pandemic, it is the position of the authors that the literature is not yet clear or definitive on what it can confidently state about what are tested best practices in distance education, especially when it comes to informal learning environments.
Successful peer-to-peer practices in informal science learning (ISL) are often not well defined, but further investigation has the potential to help uncover how to motivate and scaffold children's joint learning in science and engineering. Team Hamster!, a PBS KIDS interactive digital series that helps youth think creatively and use engineering skills to solve problems with everyday tools, will be used to achieve the goals of this project.
This project will focus on understanding how media can improve boys' and girls' perceptions of female scientists and engineers and increase children's understanding of mixed-gender collaborations in STEM.
DATE:
-
TEAM MEMBERS:
Sara SweetmanDaniel WhitesonAbdeltawab HendawiJorge Cham
resourceresearchMuseum and Science Center Exhibits
Recent advances in multimodal learning analytics show significant promise for addressing these challenges by combining multi-channel data streams from fully-instrumented exhibit spaces with multimodal machine learning techniques to model patterns in visitor experience data. We describe initial work on the creation of a multimodal learning analytics framework for investigating visitor engagement with a game-based interactive surface exhibit for science museums called Future Worlds.
DATE:
TEAM MEMBERS:
Jonathan RoweWookhee MinSeung LeeBradford MottJames Lester
resourceresearchMuseum and Science Center Exhibits
Multimodal models often utilize video data to capture learner behavior, but video cameras are not always feasible, or even desirable, to use in museums. To address this issue while still harnessing the predictive capacities of multimodal models, we investigate adversarial discriminative domain adaptation for generating modality-invariant representations of both unimodal and multimodal data captured from museum visitors as they engage with interactive science museum exhibits.
DATE:
TEAM MEMBERS:
Nathan HendersonWookhee MinAndrew EmersonJonathan RoweSeung LeeJames MinogueJames Lester
resourceresearchMuseum and Science Center Exhibits
Recent years have seen a growing interest in investigating visitor engagement in science museums with multimodal learning analytics. Visitor engagement is a multidimensional process that unfolds temporally over the course of a museum visit. In this paper, we introduce a multimodal trajectory analysis framework for modeling visitor engagement with an interactive science exhibit for environmental sustainability.
DATE:
TEAM MEMBERS:
Andrew EmersonNathan HendersonWookhee MinJonathan RoweJames MinogueJames Lester
resourceresearchMuseum and Science Center Exhibits
In this paper, we introduce a Bayesian hierarchical modeling framework for predicting learner engagement with Future Worlds, a tabletop science exhibit for environmental sustainability.
DATE:
TEAM MEMBERS:
Andrew EmersonNathan HendersonJonathan RoweWookhee MinSeung LeeJames MinogueJames Lester
resourceevaluationMuseum and Science Center Exhibits
This document presents the final evaluation report for the NSF-funded AISL project: "Multimodal Visitor Analytics: Investigating Naturalistic Engagement with Interactive Tabletop Science Exhibits."
In this paper, we investigate bias detection and mitigation techniques to address issues of
algorithmic fairness in multimodal models of museum visitor visual attention.
DATE:
TEAM MEMBERS:
Halim AcostaNathan HendersonJonathan RoweWookhee MinJames MinogueJames Lester