Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.

The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.

This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.

Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
DATE: -
TEAM MEMBERS: Maria Ong Apriel Hodari
resource project Public Programs
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.

About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.

The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE: -
TEAM MEMBERS: Christine Hailey Cameron Denson Chandra Austin
resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource project Public Programs
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
DATE: -
TEAM MEMBERS: Tara Chklovski Toby Cumberbatch Shrikanth Narayanan Doe Mayer Jed Dannenbaum Harouna Ba Molly Porter Preeti Gupta Sylvia Perez
resource project Public Programs
Science Club is an after school program created in partnership between Northwestern University and the Boys & Girls Clubs of Chicago. Every week throughout the academic year, middle school youth (grades 5-8) work in small groups with their graduate student mentors on challenging, hands-on experiments. The six Science Club curricular modules cover topics ranging from biomedical engineering to food science, all with the goals of helping youth to 1) improve their understanding of the scientific method, 2) develop scientific habits of mind, and 3) increase their interest in STEM fields, particularly health-related careers. Science Club serves 60 youth every quarter with the help of 30 trained scientist mentors. Science Club meets three days a week at the Pedersen-McCormick Boys & Girls Club in Chicago, IL.
DATE: -
TEAM MEMBERS: Northwestern University Rebecca Daugherty
resource project Professional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE: -
TEAM MEMBERS: Stephen Madigosky William Keilbaugh Victor Donnay Bruce Grant Thomas Schrand
resource project Public Programs
This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE: -
TEAM MEMBERS: James Mcginnis Spencer Benson Scott Dantley
resource project Professional Development, Conferences, and Networks
This four year project led by The American Association for the Advancement of Sciences (AAAS) will continue fostering interactions among projects funded by the Graduate STEM Fellows in K-12 Education (GK-12)through a series of meetings that include one annual meeting and two special focus meetings every year. The annual meeting will be broad and will target all different GK-12 participants (PIs, Fellows, Teachers, Project Coordinators, Evaluators and Faculty Members). The special focus meetings will target a specific GK-12 group or will explore a theme or issue of special interest to the GK-12 program or GK-12 projects. AAAS also will update the current website and revise and expand its content to provide a resource to the GK-12 community. Some of the additions to the website will be: an e-newsletter, alumni directory, evaluation instruments, ready access to STEM activities and statistical data on projects.
DATE: -
TEAM MEMBERS: Betty Calinger Daryl Chubin
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Professional Development, Conferences, and Networks
The Center for Informal Learning and Schools (CILS) is a five-year collaborative effort between the Exploratorium in San Francisco, the University of California at Santa Cruz, and King's College London. The purpose of the Center is to study the intersection of informal science learning that takes place in museums and science centers and formal learning that takes place in schools, and to prepare leaders in informal science education. Through the efforts of the center, new doctoral level leaders will be prepared who understand how informal science learning takes place and how informal institutions can contribute to science education reform. A Ph.D. program will be offered to 16 individuals at King's College London (two cohorts of eight) and a post-doctoral program to six scientists interested in issues of learning and teaching in informal settings. A doctoral program is planned at the University of California at Santa Cruz for 24 students, 12 whose interests are primarily in education and 12 who come from the sciences. In addition to doctoral level training, there will be a certification program for existing informal science professionals to better enable them to support teachers, students and the general public. That program will provide 160 informal science educators 120 hours of professional development experiences, and an additional 24 informal science educators with a master's degree in informal science education at UC Santa Cruz. A Bay Area Institute will be developed to serve as a central focus for all CILS activities. It will bring together researchers and practitioners; it will offer courses and workshops for graduate students; and it will provide a central location for reporting research findings and methodologies that focus on how informal learning institutions can best contribute to science education reform.
DATE: -
TEAM MEMBERS: Robert Semper Jonathan Osborne Lynda Goff Rodney Ogawa Richard Duschi Joyce Justus
resource project Informal/Formal Connections
This project augments an NCES data collection effort for the High School Longitudinal Study by including 150 additional schools in up to 10 selected states to create state representative samples of at least 40 schools in each state. NCES will create a contract with a survey organization to collect survey data from students in about 800 schools starting at the 9th grade and following them to age 26. The student, teacher, and parent survey data will be merged with state administrative data. Thus the final data set for these states will include detailed longitudinal data on student education histories, test scores, courses, demographics, and other survey information about parents and teachers. In some of the states the student data will be linked with detailed teacher data. The purpose of this augmentation is to provide support for additional schools to create state samples. NSF will also be involved in planning for future surveys of these students as they reach college age.
DATE: -
TEAM MEMBERS: Laura LoGerfo
resource project Media and Technology
A national facility a three-system ground-based mobile radar fleet, the Doppler On Wheels (DOWs). The three systems include two mobile X-band Doppler on Wheels and the 6 to 12 beam "Rapid Scan DOW". These radar systems have participated in research projects that have covered a broad range of topics including individual cumulus cloud studies, orographic precipitation and dynamics, hydrologic studies, fire weather investigations, severe convective storms and tropical cyclones at landfall. DOWs can be frequently utilized on site for educational activities, such as being part of a university atmospheric instrumentation courses. The DOWs can be operated by students with minimal, often remote, technical supervision. The DOWs add significantly to the facility infrastructure of the atmospheric sciences community.
DATE: -
TEAM MEMBERS: Joshua Wurman