The Vermont Center for the Book is developing "Mother Goose Cares about Math and Science," an integrated curriculum of science process skills and standards-based mathematics concepts for preschool children. A college credit course will be developed for childcare providers based on this curriculum. The course increases science and math literacy and the ability to incorporate NCTM standards, and science process skills, into daily interactions with children. Participants are also provided with the tools to communicate the importance of these concepts to parents. The course will be delivered to 600 childcare workers in Vermont and inner-city Philadelphia over a three-year period. Recruitment will include providers in center-, home- and school-based settings in both urban and rural communities. Participants will be provided with books, Curriculum Guides, tools and manipulatives needed to implement the course pedagogy. Materials to be developed include a seven-segment training, which will be used to disseminate the project nationally. Participants will receive a comprehensive training package that can be used to train their peers.
The Informal Science Education Program has been supporting the radio series "Living on Earth" for several years. The World Media Foundation is now adding environmental science and technology features to "Living on Earth" and is developing and testing an outreach component that will involve youth as researchers and radio producers. The science and technology features, ranging in length from four to twenty-four minutes, will depart from the usual news-driven reports on the programs. Many of the segments will illustrate basic building blocks of environmental science, technology and related mathematics. Others will profile diverse pioneers in these disciplines. The radio programs will be the framework for an interdisciplinary exploration program for youth. Working with a team of educators from the Antioch University Graduate Program in Environmental Education, the project staff will develop a program in which secondary school aged youth cooperate with peers to produce professional, concise reporting on local environmental issues. Living on Earth will feature the best of the student work on National Public Radio and highlight these pieces as an expanded feature on its website.
This proposal requests partial funding for the development of a new paleobiology hall at the University of Nebraska State Museum. This project will give students and the general public a dynamic view of the period of time known as the Age of Reptiles. It emphasizes experience with interactive exhibits that focus on concepts of geologic time, how species adapt and change, relative size, scale and time, the activities of scientists as role models, and it provides reinforcement of these experiences for students in the classroom. This project includes the first use in a museum of SemNet, a software program designed for concept mapping and the representation of knowledge networks, which will be used with a videodisc. Prototypes of all interactive exhibits will undergo formative evaluation to establish maximal audience accessibility, ease of use and educational effectiveness. The exhibit concepts will be disseminated throughout the state of Nebraska through mini- versions, teachers in-service training, and scientist-in- residence programs. This project will also be used as a teaching laboratory for the University of Nebraska's graduate program in Museum Studies.
The scientific community is challenged by the need to reach out to students who have traditionally not been attracted to engineering and the sciences. This project would provide a link between the University of Michigan and the teachers and students of secondary education in the State of Michigan with an initial emphasis on southeast Michigan, through the creation of a range of computer services which will provide interactive access to current weather and climate change information. Taking advantage of a unique computer network capacity within the State of Michigan named MichNet which provides local phone ports in virtually every major city in the state, and the resources available to the university community via the University Corporation for Atmospheric Research (UCAR) UNIDATA program, this project would provide secondary schools with access to a state-of-the-art interactive weather information system. The real-time data available via the system, supplemented by interactive computer modules designed in collaboration with earth science teachers, will provide animated background information on a range of climate and weather related topics. While the principal objective of this project will be to provide educationally stimulating interactive computer systems and electronic weather and climate modules for application in inner city Detroit and its environs, the unique nature of the available computer networking will allow virtually every school system in the state to have access. Subsequently successful completion of this project could eventually make the same systems available to other cities and states.
Communicating Ocean Sciences to Informal Audiences (COSIA) is an innovative project that creates unique partnerships between informal science education institutions and local colleges conducting research in ocean sciences, with an emphasis on earth, biological and geochemical sciences. The project enables over 100 undergraduate and graduate students that are enrolled in the Communicating Ocean Sciences college course to create engaging learning activities and teaching kits in conjunction with their informal education partners. Institutional teams include: Long Beach Aquarium and California State University-Long Beach; Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; Virginia Aquarium and Science Center and Hampton University; Liberty Science Center and Rutgers University; and Lawrence Hall of Science and University of California-Berkeley. Students learn valuable outreach skills by providing visiting families and children with classes, guided tours and interactive learning experiences. Deliverables include a three-day partner workshop, a series of COSIA Handbooks (Collaboration Guide, Informal Education Guide and Outreach Guide), an Informal Science Education Activities Manual and Web Bank of hands-on activities. Strategic impact will be realized through the creation of partnerships between universities and informal science education institutions and capacity building that will occur as informal science institutions create networks to support the project. It is also anticipated the evaluation outcomes will inform the field abut the benefits of museum and university partnerships. The project will impact more than 30,000 elementary and middle school children and their families, as well as faculty, staff and students at the partnering institutions.
A national facility a three-system ground-based mobile radar fleet, the Doppler On Wheels (DOWs). The three systems include two mobile X-band Doppler on Wheels and the 6 to 12 beam "Rapid Scan DOW". These radar systems have participated in research projects that have covered a broad range of topics including individual cumulus cloud studies, orographic precipitation and dynamics, hydrologic studies, fire weather investigations, severe convective storms and tropical cyclones at landfall. DOWs can be frequently utilized on site for educational activities, such as being part of a university atmospheric instrumentation courses. The DOWs can be operated by students with minimal, often remote, technical supervision. The DOWs add significantly to the facility infrastructure of the atmospheric sciences community.
DATE:
-
TEAM MEMBERS:
Joshua Wurman
resourceresearchProfessional Development, Conferences, and Networks
This is a two-session science communication workshop targeted to undergraduate students participating in university-based research programs such as NSF Research Experience for Undergraduates (REU) program, which typically occur during the summer months. University faculty and science museum staff integrate the sessions into the research program curriculum to enhance the students’ science communication skills, with an emphasis on professional oral, powerpoint, and poster presentations. Each session takes a half-day, but they can be shortened.
The Museum of Science partnered with the Center for High-rate Nanomanufacturing to create a sequence of professional development experiences in science communication and hands-on learning for graduate students and post-docs. The Sharing Science Workshops were intended to help graduate students who work with the CHN program to improve their abilities to present their research to a variety of scientific and nonscientific audiences. The sequence included a half-day "Sharing Science" workshop, a half-day guided "Practicum" with museum visitors, and optional participation in NanoDays events at MOS
DATE:
TEAM MEMBERS:
Donahue Institute Research and Evaluation Group
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
The Self-Reliance Foundation (SRF) Conociendo Tu Cuerpo (Know Your Body) Hispanic Community Health Sciences Education project is an initiative designed to introduce Hispanic students and families to biomedical science and health education resources, and increase their participation levels in these fields. The educational goals of the project are to: (1) Encourage Hispanic undergraduate students to pursue careers in biomedicine and science through a mentoring program at the university level; (2) Inspire an interest in biomedical science among Hispanic elementary-age students and parents through community outreach activities; (3) Inform Hispanic parents about biomedical science education standards and academic requirements for pursuing biomedical and science related careers; and (4) Inform and inspire Hispanic students and their families about the biomedical sciences and related careers through a series of daily nationally broadcast Spanish-language radio capsules, and a nationally syndicated Spanish newspaper column. Conociendo Tu Cuerpo (Know Your Body) includes several key components: A model, Washington, D.C., area coalition of informal science, health, community, education, and media organizations that will publicize and provide hands-on health science activities at community festivals and other community settings; Hispanic undergraduate student health-science fellows to be trained and provided experience in facilitating health science activities; and nationally broadcast Spanish-language radio capsules that will cover topics in areas of biomedicine, research, education, and health-science careers. Parents and students will be able to access additional information about biomedical science opportunities and Hispanic role models in the biomedical sciences through the project's Conociendo Tu Cuerpo website and the bilingual 800 telephone help line promoted by 147 participating radio stations and 102 newspapers nationwide. The project will be supported at the national level through collaboration with the Hispanic Radio Network and the Pacific Science Center. The Washington, D.C., collaborative will include the Capital Children's Museum, local Spanish language radio stations, area universities, and health and community organizations. Development Associates, the largest American education and evaluation consulting corporation, will evaluate the project.
This is a handout from the Science Learning Plus (SL+) Forum held on InformalScience.org from July 6-17, 2015. It lists and describes resources about research and practice collaborations.