This is a brief literature review examining the theory and practice of Community-Based Participatory Research (CBPR). It highlights CBPR's liberatory intent, and focuses on CBPR practice in indigenous communities and among youth.
In this paper we investigate how people become engaged with open data, what their motivations are, and the barriers and facilitators program participants perceive with regard to using open data effectively.
DATE:
TEAM MEMBERS:
Jack ShanleyCamillia MatukOded NovGraham Dove
This Innovations in Development project aims to foster the development of STEM identity among a diverse group of middle school students and, in turn, motivate them to pursue in STEM interests and careers. Vegas STEM Lab, led by a team of investigators from the University of Nevada, Las Vegas, will employ a mix of online and on-site activities to introduce students to engineering methods in the context of the entertainment and hospitality (E&H) industry that is the lifeblood of Las Vegas. Investigators will collaborate with local resorts, multimedia designers, and arts institutions to offer field experiences for students to interview, interact with, and learn from local experts. The Lab will help youth overcome prevailing beliefs of STEM as boring and difficult, boost their confidence as STEM-capable individuals, and expose them to the exciting STEM careers available in their hometown. UNLV engineering undergrads will serve as near-peer mentors to the middle school students, guiding them through Lab activities and acting as role models. Investigators will measure student learning and engagement over the course of the Vegas STEM Lab experience with the aim of understanding how the Lab model—with its rich set of activities and interpersonal interactions set in the local E&H industry—can cultivate STEM identity development and encourage students to pursue STEM pathways. Despite the project’s hyperlocal focus on the Las Vegas community, if successful, other cities and towns may learn from and adapt the Lab model for use in their youth development programs.
Vegas STEM Lab will provide online materials for students’ STEM learning during the academic year followed by on-site visits and hands-on project development during a three-week summer experience. The Lab will run for three years with cohorts of 40 students each (N=120) with the aim of iteratively improving its activities and outcomes from year to year. The local school district will help recruit middle school students who have demonstrated low interest in STEM to participate in the Lab, ensuring that participants reflect the demographic makeup of the Las Vegas community in terms of race and ethnicity, socio-economic status, and gender. Summer activities will take students behind the scenes of the city’s major E&H venues; investigate the workings of large-scale displays, light shows, and “smart hospitality” systems; and then build their own smaller scale engineering projects. Investigators will employ the Dynamic Systems Model of Role Identity (DSMRI) framework to study how intentionally designed Lab experiences shape students’ understanding of themselves, their future aspirations, and their grasp of the scientific enterprise. Summer activities will be integrated into the online learning platform at the end of each year of Vegas STEM Lab, and in the final year of the project, workshops will train local educators to use the platform in either formal or informal learning settings. Materials and research findings produced through this work will be disseminated to middle school teachers and afterschool care providers, and shared with researchers through academic publications and conferences.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE:
-
TEAM MEMBERS:
Emma RegentovaVenkatesan MuthukumarJonathan HilpertSi Jung Kim
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.
Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Aaron WilsonSergey GrigorianXiaohui WangMayra Ortiz
This commentary introduces a preliminary conceptual framework for approaching putative effects of scholarly online systems on collaboration inside and outside of academia. The first part outlines a typology of scholarly online systems (SOS), i.e., the triad of specialised portals, specialised information services and scholarly online networks which is developed on the basis of nine German examples. In its second part, the commentary argues that we know little about collaborative scholarly community building by means of SOS. The commentary closes with some remarks on further research questions
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Human-induced global change has triggered the sixth major extinction event on earth with profound consequences for humans and other species. A scientifically literate public is necessary to find and implement approaches to prevent or slow species loss. Creating science-inspired art can increase public understanding of the current anthropogenic biodiversity crisis and help people connect emotionally to difficult concepts. In spite of the pressure to avoid advocacy and emotion, there is a rich history of scientists who make art, as well as art–science collaborations resulting in provocative work
DATE:
TEAM MEMBERS:
Jennifer HarrowerJennifer ParkerMartha Merson
Mathematics is the foundation of many STEM fields and success in mathematics is a catalyst for success in other scientific disciplines. Increasing the participation of women and other under-represented groups in the mathematics profession builds human capital that produces a diverse pool of problem solvers in business and industry, research mathematicians, faculty at all levels, and role models for the next generation. Existing support and enrichment programs have targeted women in mathematics at different stages in their undergraduate and graduate education, with different strategies to building community, creating a sense of belonging, and promoting a growth mind set. These strategies challenge some of the most common obstacles to success, including isolation, stereotype threat, not committing to mathematics early enough, and imposter syndrome. Acknowledging the diversity among women in terms of socio-economic background and educational background, this project proposes to examine the effectiveness of these programs through the lens of two primary questions: (1) Which elements of these programs are most critical in the success of women, as a function of their position along these distinct diversity axes?, and (2) which features of these programs are most effective as a function of the stage of the participant's career? These questions are guided by the rationale that a better understanding of, and improved pathways by, which programs recruit and retain undergraduate and graduate women in mathematics has the strong potential to increase the representation of women among mathematics PhDs nationwide.
This project seeks to increase and diversify the number of professional mathematicians in the United States by identifying and proliferating best practices and known mechanisms for increasing the success of women in mathematics graduate programs, particularly women from under-represented groups. The PIs on this proposal, all of whom are leaders of initiatives that have been active for nearly two decades, will work with experts in management, data collection and reporting, and communications to address the following three challenges: (1) develop a common system of measuring the effectiveness of each element in these initiatives; (2) develop a process for effective, collective decision making; and (3) create connections between existing activities and resources. This project is both exploratory research and effectiveness research. The project team first will explore the contextual factors that serve to support or inhibit female pursuit of mathematics doctorates by interviewing a variety of women who were undergraduate mathematics majors in the past, as well as current professional mathematicians. They then will use this information to better understand the most effective features of various current and past initiatives that are trying to increase the participation of women in advanced mathematics. A key stakeholder meeting will develop a process for effective, collective decision-making, to utilize what the project team learns from the interviews. The leadership team will develop a website with discussion board and social media components to highlight best practices and facilitate a virtual community for women interested in mathematics. Finally, a distillation of program elements and their targeted effectiveness will inform the selection of interconnected activities to test on a scalable model. These prototypes will be implemented at several sites chosen to represent a diversity of constituencies and local support infrastructure.
DATE:
-
TEAM MEMBERS:
Judy WalkerAmi RadunskayaRuth HaasDeanna Haunsperger
Developing and maintaining a diverse, innovative workforce in the fields of science, technology, engineering and math (known as STEM) is critical to American competitiveness in the world, but national surveys report a current and future shortage of highly qualified STEM professionals in the US. One problem creating this shortage is that more than half of all college students who declare a major in STEM fields drop out or change their majors in the first two years of their post-secondary education. This problem is particularly acute for first generation college students. If we could increase the STEM degree completion rate by just 25%, we would make up 75% of the additional workforce needed over the next decade.
Our project aims to increase the STEM persistence of first generation college students and focuses on rural students in West Virginia. Project partners including scientists from National Labs, college faculty, local school system staff, informal educators, State Department of Education officials, and West Virginia college students will collaborate to develop summer and academic year activities that support young undergraduates majoring in STEM. Activities that we will pilot include early opportunities to do science research, academic year courses that develop science, math and communication skills, and the formation of Hometown STEM Ambassadors; undergraduate STEM students that encourage younger students back in their hometown schools. We will study the impact of these activities on students' persistence in STEM majors.
Our Project is called FIRST TWO: Improving STEM Persistence in the First Two Years of College (FIRST TWO).
Technical Details:
During the Development Launch Project, partners will create and pilot components of two courses that will confer college credit to students in two and four year schools. Each course will have as its center piece a research and development internship. By the end of the Project Development Pilot, FIRST TWO course modules will be integrated into courses the State, and be transferable between community colleges and four-year schools.
An innovative component of FIRST TWO is the creation of Hometown STEM ambassadors--students who participate in both courses will be prepared to mentor their peers, and also conduct outreach in their home school districts. They will make presentations to hometown K-12 students, and will discuss STEM college readiness issues with local education leaders. We believe reconnecting post-secondary students with their home communities and providing place-based relevance to their STEM education will have a positive impact on their persistence, as well as the added benefit of encouraging K-12 students to envision themselves as future STEM professionals.
FIRST TWO will:
- integrate early experience in STEM internships, online communities of practice and STEM skills development into a discovery-based "principles of research and development" college seminar for first year students;
- sustain engagement through a second service learning course, called STEM Leadership that will develop communication and mentoring skills and produce peer mentors who will mentor younger students, join in the efforts to change the STEM education experience at their schools, and conduct outreach in their hometown communities during the students? second year and third years.
- secure state-wide adoption and transferability of these courses, or course materials, and ultimately scale the program across the Appalachian region and to other states with large rural student populations.
- collaborate with National Labs to determine the feasibility of a National STEM Persistence Alliance partnering National Lab internship programs with 2 and 4-year schools who serve FGC students.
Finally, there are many studies that inquire into the factors that correlate with post-secondary retention in general, and with STEM attrition specifically but few that focus on rural students. FIRST TWO will fully articulate a rigorous educational research project aimed at advancing understanding of the factors affecting rural students' entry into and persistence in STEM career pathways. This research will study the impact FIRST TWO program components make on rural FGC students' persistence in STEM majors. Instruments will be developed and validated that test the components proposed in FIRST TWO interventions. As we scale the program to a larger Alliance, so will the research study scale, providing a unique opportunity to inform the education community about the rural students' experience.
DATE:
-
TEAM MEMBERS:
Sue HeatherlyKaren ONeilErica Harvey
Although major growth in engineering and computing jobs is expected in the next 10 years, students are not majoring in sufficient numbers to meet this demand. These impending workforce demands cannot be met without developing the skills of racial and ethnic minorities: however, Hispanics and Black/African Americans make up only a small percentage of doctoral students in the United States. The goal of the Consortium of Minority Doctoral Scholars (CMDS) Design and Development Launch Pilot is to broaden the participation of minorities in these fields. This pilot project will create a data portal that will allow the research team to study and understand the efficacy of various mentoring strategies that might be piloted across institutions and minority doctoral scholars programs.
Part II
The Consortium of Minority Doctoral Scholars (CMDS) will unite three of the nation's oldest and most prominent minority doctoral scholars programs (GEM, SREB and McKnight); organizations with a long history of impact in increasing the numbers of minorities obtaining advanced degrees. The CMDS Design and Development Launch Pilot will conduct extensive studies using data from these three programs. The research team will conduct a mixed method analysis of the data to discover commonalities and distinctions about the three programs' mentoring efforts as compared to students not involved in the three programs. This will result in a data-driven strategy for researching the efficacy of mentoring programs that can be applied across the three CMSD member and other minority doctoral scholars programs. By utilizing data from successful programs to pinpoint effective mentoring strategies, the project will create opportunities for larger numbers of minorities to be successful. This approach has implications not only with respect to equity and access, but also the development of a workforce that will drive future advances.
DATE:
-
TEAM MEMBERS:
Juan GilbertShaundra DailyJerlando Jackson
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.
This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE:
-
TEAM MEMBERS:
David WatkinsBuyung AgusdinataChelsea SchellyRachael ShwomJenni-Louise Evans