Skip to main content

Community Repository Search Results

resource research Media and Technology
Information visualization could be used to leverage the credibility of displayed scientific data. However, little was known about how display characteristics interact with individuals' predispositions to affect perception of data credibility. Using an experiment with 517 participants, we tested perceptions of data credibility by manipulating data visualizations related to the issue of nuclear fuel cycle based on three characteristics: graph format, graph interactivity, and source attribution. Results showed that viewers tend to rely on preexisting levels of trust and peripheral cues, such as
DATE:
TEAM MEMBERS: Nan Li Dominique Brossard Dietram Scheufele Paul Wilson Kathleen Rose
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
DATE: -
TEAM MEMBERS: Emily Edwards Curtis Suplee
resource project Media and Technology
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.

During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
DATE: -
TEAM MEMBERS: David Reitze
resource research Media and Technology
I still remember very clearly my first encounter with peer review: I was a Ph. D. student in physics and I had written my first paper, submitted it to a journal and - after what seemed to me a very long time - received a reply with the request for few changes and corrections I was supposed to include in my paper before it could be considered for publication. These very simple steps: the writing up of some original research results in a paper, its submission to a journal and the process of the work being read and judged by someone reputed to be an expert in the field is what we call peer review
DATE:
TEAM MEMBERS: Marco Fabbrichesi
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Media and Technology
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
DATE:
TEAM MEMBERS: Roxanne Hughes
resource project Media and Technology
"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "
DATE: -
TEAM MEMBERS: Jim Madsen Silvia Bravo Gallart
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman