This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.
The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.
This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.
Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.
The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE:
-
TEAM MEMBERS:
Steven StochajPatricia SullivanLuis Vazquez
resourceprojectProfessional Development, Conferences, and Networks
Jobs are growing most rapidly in areas that require STEM knowledge, causing business leaders to seek skilled American workers now and in the near future. Increase in the number of students pursuing engineering degrees is taking place but the percentages of underrepresented students in the engineering pipeline remains low. To address the challenge of increasing the participation of underrepresented groups in engineering, the National Society of Black Engineers, the American Indian Science and Engineering Society, the Society of Hispanic Professional Engineers, and the Society of Women Engineers have formed the 50K Coalition, a collaborative of over 40 organizations committed to increasing the number of bachelors degrees awarded to women and minorities from 30,000 annually to 50,000 by 2025, a 66% increase. The 50K Coalition is using the Collective Impact framework to develop an evidence-based approach that drives management decision-making, improvements, sharing of information, and collective action to achieve success. The first convening of the 50K Coalition in April, 2016, brought together 83 leaders of the engineering community representing 13 professional societies with over 700,000 members, deans of engineering, minority engineering and women in engineering administrators from 11 leading colleges of engineering, and corporate partners representing six global industries. Consensus was reached on the following Common Agenda items: 1.) Undergraduate support and retention; 2.) Public awareness and marketing; 3.) K-12 support; 4.) Community College linkages; 5.) Culture and climate. The Coalition will encourage member organizations to develop new programs and scale existing programs to reach the goal.
The Coalition will use shared metrics to track progress: AP® Calculus completion and high school graduation rates; undergraduate freshmen retention rates; community college transfer rates and number of engineering degrees awarded. The 50K Coalition will develop the other elements of the Collective Impact framework: Infrastructure and effective decision-making processes that will become the backbone organization with a focus on data management, communications and dissemination; a system of continuous communication including Basecamp, website, the annual Engineering Scorecard, WebEx hosted meetings and convenings; and mutually reinforcing activities such as programs, courses, seminars, webinars, workshops, promotional campaigns, policy initiatives, and institutional capacity building efforts. The National Academy of Sciences study, Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads recommended that professional associations make recruitment and retention of underrepresented groups an organizational goal and implement programs designed to reach that goal by working with their membership, academic institutions and funding agencies on new initiatives. While these types of organizations work together now in a variety of ways, the relationships are one-on-one. The 50K Coalition brings together, for the first time professional societies, engineering schools, and industry to consider what mutually reinforcing activities can most effectively encourage students from underrepresented groups to complete calculus and graduate from 4-year engineering programs.
DATE:
-
TEAM MEMBERS:
Karl ReidBarry CorderoSarah EcohawkKaren Horting
This is a two-year "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot targeting high school students in the Hudson Valley, including the New York Metropolitan Area. It will support a network of institutional partners that are committed to providing internship and mentoring opportunities to youths interested in authentic research projects. The proposed work will build on a current research immersion program--the Secondary School Field Research Program (SSFRP) at Columbia University's Lamont-Doherty Earth Observatory. SSFRP serves high school students, mainly from underrepresented and underserved communities, who work with college students, science teachers, and researchers around a specific science problem. Over the past decade, the program has had demonstrable impact, including attendance to college, and students' selection of STEM majors. Tracking data indicates that retention rates of its alumni in four-year colleges are well above the norm, and a significant fraction of early participants are now in graduate programs in science or engineering. The program has surpassed all expectations in its effectiveness at engaging underserved populations in science and promoting entry into college, recruitment into STEM majors, and retention through undergraduate and into graduate studies. Hence, the project's overall goal will be to extend and adapt the research-immersive summer internship model through an alliance with peer research institutions, school districts and networks, public land and resource management agencies, private funding agencies, informal educational institutions, and experts in pedagogical modeling, metrics, and evaluation. Focused on earth and environmental sciences, the summer and year-round mentoring model will allow high school students to work in research teams led by college students and teachers under the direction of research scientists. The mentoring model will be multilayered, with peer, near-peer, and researcher-student relationships interweaving throughout the learning process.
The project has formulated a set of testable explanatory hypotheses: (1) Beyond specific subject knowledge, success rests on increased student engagement in a community of practice, with near-peer mentors, teachers, and scientists in the context of scientific research; (2) The intensity of engagement also shifts the students' vision of their future to include higher education, and specifically to imagine and move toward a STEM career; and (3) Early engagement, before students attend college, is critical because high school is where students form patterns of engagement and capacities related to science learning. Thus, the immediate goal of the two-year plan will be to create approximately 11 research internship programs focused on earth and environmental sciences, and to build the networks for growth through engagement with a wider community of educational partners. The main focus of this approach will be removing barriers between high school students and STEM organizations, and adapting the current mentoring model at Columbia University to the specific cultures of other research groups and internship programs throughout the lower Hudson Valley. The team has already assembled a diverse set of partners committed to broadening participation in STEM using a collective impact approach to early engagement in project-based learning. Research partners will provide the mentors, research projects, and laboratory facilities. The educational network partners will provide access for students, particularly those from under-resourced communities to participate, as well as participation opportunities for interested teachers. Informal learning organizations will provide access to field and research sites, along with research dissemination opportunities. In Year 1, the project will conduct a series of development workshops for partners already in place and foster the formation of new partnership clusters according to shared interest, complementary resources and geographic proximity. The workshops will provide a forum for partners to learn about each other's visions, values, challenges, and existing structures, while working through theoretical and practical issues related to STEM engagement for young investigators. In Year 2, the project will target the implementation of the internship programs at various sites according to the agreed-upon goals, program model, research projects, recruitment and retention strategy, staff training, data collection, and evaluation plans. An external evaluator will address both the formative and summative evaluation of the effort directed toward examining the three project's hypotheses concerning the educational impacts of scientific research on student engagement, extent of the immersion, and overall effectiveness of the programs.
DATE:
-
TEAM MEMBERS:
Robert NewtonLuo Cassie XuMargie TurrinEinat LevMatthew Palmer
resourceprojectProfessional Development, Conferences, and Networks
Most experimental studies in the behavioral sciences rely on college students as participants for reasons of convenience, and most take place in North America and Europe. As a result, studies are only sampling from a narrow range of human experiences. The results of these studies have limited generalizability, failing to reflect the full range of mental and behavioral phenomena across diverse cultures and backgrounds. However sampling from broader populations is challenging, due to limited opportunities and access, heightened cost, and the need for specific knowledge about how to adapt research protocols to different communities. The goal of this workshop is to develop some tools and guidelines to help researchers overcome barriers to broader sampling, and to incentivize doing so through better institutional support.
The goal of this workshop is to develop tools to support and encourage increased robustness and generalizability in the experimental behavioral sciences. The meeting is dedicated to identifying and developing potential solutions to the so-called "WEIRD people" problem: the fact that most experimental behavioral science research is conducted with members of WEIRD populations (Western, Educated, Industrialized, Rich Democracies). The discovery that much of this research fails to generalize to broader populations and fails to capture the range of human patterned variation in thought and behavior creates a pressing need for research approaches to be more inclusive. Although there are researchers throughout the world who have developed effective models for overcoming these limitations, there are significant barriers to achieving robust and generalizable experimental behavioral research for most researchers. This workshop will bring together scholars from a range of disciplines whose research represents positive case studies of how to overcome these barriers. The participants aspire to accomplish three goals: 1) develop tools and training materials to help researchers enhance diversity in their research populations, 2) develop infrastructure solutions for connecting researchers across diverse contexts and populations, and 3) develop a set of recommendations for institutional changes to support enhancing diversity in experimental behavioral science through manuscript, grant, and tenure review.
DATE:
-
TEAM MEMBERS:
Douglas MedinDaniel HruschkaLera BoroditskyCristine Legare
U.S. strength in science, technology, engineering, and mathematics (STEM) disciplines has formed the basis of innovations, technologies, and industries that have spurred the nation’s economic growth throughout the last 150 years. Universities are essential to the creation and transfer of new knowledge that drives innovation. This knowledge moves out of the university and into broader society in several ways – through highly skilled graduates (i.e. human capital); academic publications; and the creation of new products, industries, and companies via the commercialization of scientific
DATE:
TEAM MEMBERS:
National Academies of Sciences, Engineering, and Medicine
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Grant funds for this project support research into the needs and preferences of the audiences to assemble content and test two pilot issues of a peer-reviewed journal supporting innovative
advances that work at the intersection of formal and informal science, technology, engineering, and math (STEM) education.
A public event series, “Ecohumanities for Cities in Crisis,” will bring humanities scholars and the public together in Miami, FL to discuss the tension between humans and nature over hundreds of years. Miami is on the verge of an environmental crisis from a warming planet and rising seas. As the region grapples with policy and science issues, humanities scholars have a unique role to play. The project will frame humanistic discussion about urban environments, risk, and resilience. The centerpiece is a public forum in March 2016 which includes a plenary of scholars from diverse humanities disciplines, a walking tour, and a panel on diversity and justice in environmental advocacy. There will be five subsequent public programs through the Fall 2016, an on online archive of all events, professional development activities for high school teachers, a graduate public environmental history course, and a curated museum exhibit.