Skip to main content

Community Repository Search Results

resource project Public Programs
Explora Science Center and Children's Museum of Albuquerque will conduct “Roots: supporting Black scholars in STEAM,” a project to increase Explora’s relationships with and relevance to Albuquerque’s Black communities and increase opportunities for Black students in Albuquerque to pursue STEAM. The project is designed to foster a holistic, place-based approach to K–16 STEAM learning that incorporates a growth mindset and highlights the contributions of community members, particularly Black STEAM professionals. The museum will collaborate on project activities with the Mexico Black Leadership Council, the Greater Albuquerque Housing Partnership/Casa Feliz, the Community School at Emerson Elementary, and Sandia National Laboratories’ Black Leadership Committee.
DATE: -
TEAM MEMBERS: Kristin Winchester Leigh
resource project Public Programs
The Arizona-Sonora Desert Museum will partner with the Flowing Wells Unified School District on “We Bee Scientists,” a program to engage students in grades K–6 in real-world science by learning about bees—the most important group of pollinators. They plan to create a curriculum and related activities aligned with the Arizona science standards. The program is an expansion of the Tucson Bee Collaborative, which empowers community scientists from “K to grey” to contribute to ecosystem health and understanding through the study of native bees. The museum also will partner with Pima Community College and the University of Arizona on the program, which will involve volunteers and high school, college, and university students in documenting the abundance and diversity of native bees.
DATE: -
TEAM MEMBERS: Debra Colodner
resource research Informal/Formal Connections
An individual's sense of themselves as a “STEM person” is largely formed through recognition feedback. Unfortunately, for many minoritized individuals who engage in STEM (science, technology, engineering, and mathematics) in formal and informal spaces, this recognition often adheres to long-standing exclusionary expectations of what STEM participation entails and institutionalized stereotypes of what it means to be a STEM person. However, caregivers, who necessarily share cultural backgrounds, norms, and values with their children, can play an important role in recognizing their children's
DATE:
TEAM MEMBERS: Heidi Cian Remy Dou Sheila Castro Elizabeth Palma-D'souza Alexandra Martinez
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.

The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
DATE: -
TEAM MEMBERS: David Uttal Amanda Dickes Leigh Peake Catherine Haden
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.

The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.

This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Amy Bower Carrie Bruce Jon Bellona
resource project Public Programs
Many of the Hispanic children and families who live in the Rio Grande Valley lack opportunities to engage in inspirational and educational experiences introducing Science, Technology, Engineering and Mathematics (STEM) concepts and related careers. The University of Texas, Rio Grande Valley (UTRGV) will adapt and research the "Energy and U Show," which will introduce thousands of children and families to an exciting and dramatic that shows interconverting different forms of energy. The show will meld the excitement of chemical demonstrations and the natural connection between energy and STEM education in a fully produced, on-stage science extravaganza. A foundational philosophy of the show is that there is additional real value in getting children and youth onto a college campus. For many of its participants, this is their first time sitting in a seat at a university, the first opportunity for them to envision themselves in this environment. In partnership with the University of Minnesota, which originally developed the show, UTRGV will adapt the show, now presented in English, to a bilingual, culturally accessible format that is designed to Hispanic family audiences and student groups in learning about energy and related careers. Evaluation results demonstrate that the show has effectively engaged thousands of Minnesota students. The target audience will be upper elementary (4th-5th grade), middle school students, and their parents. This project will be led by UTRGV, nation's second-largest Hispanic Serving Institution, with a student enrollment of 28,000, of which over 90% are Hispanic and more than 60% are first-generation college students). In addition to the show, the project will include: (1) a manual to guide implementation of the program and related resources at different national or international venues; (2) educational resources for parents, teachers and school counselors introducing STEM careers and specific STEM college majors; (3) mentoring of UTRGV faculty in outreach activities; and (4) dissemination of the show to other campuses and venues.

The project will conduct ongoing research and evaluation guiding the adaptation of the show and investigation of factors contributing to positive educational impacts of the project, which will be carried out by a bilingual/bicultural researcher. Project research instruments will measure student level of engagement, interest and learning, as well as college interest, in surveys and analysis of data pre and post demonstration. The project will specifically investigate the impact of language on student impacts. Each component of this project will be studied to determine program intervention effectiveness (the scientific demonstration and language of the demonstration). To determine program effectiveness, a baseline of data before program implementation will be established concerning Hispanic students, their persistence, and perceptions of the environment. The project will measure parent perceptions of STEM careers for their children through pre and post demonstration surveys and focus groups. Student and parent research participants will be able to use surveys or respond to other research activities in the language of their choice. Project findings will contribute to the knowledge base concerning how linguistically and culturally adapted science shows and related resources adapted into can have positive impacts regarding the STEM knowledge and careers of students and parents from low-income and Hispanic communities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Karen Lozano Arturo Fuentes Aaron Massari Brian Warren
resource project Public Programs
This project responds to the Faculty Early Career Development Program (CAREER) solicitation (NSF 17-537) and is sponsored by the Advancing Informal STEM Learning program at the National Science Foundation. CAREER: Talking Science: Early STEM Identity Formation Through Everyday Science Talk (Talking Science) addresses the critical issue of the development of children's identification with science, technology, engineering and mathematics (STEM) fields and the limited knowledge about the development of STEM identity through conversations, particularly among very young children from underserved and underrepresented populations. Talking Science is based on the premise that individuals who develop STEM interests and identify with STEM at a young age tend to participate in STEM fields more so than individuals who develop these later in life. This study investigates how STEM-related conversations outside of school with friends and family during formative years (i.e., 7 - 12 years old) shape youths’ STEM identity later in life and their engagement in STEM. The goals of Talking Science are (1) To develop an understanding of the features and context of conversations held between children and their caregivers/teachers that support STEM identity development in both majority and Hispanic/Latine populations; and (2) To translate the research outcomes into informal STEM learning practices that positively contribute to young people's perceptions of STEM fields in their future.

To achieve its goals, this work addresses the following research questions: (1) What is the content, context, and structure of STEM-related conversations with friends and family that youth ages 7 - 12 participate in?; (2) How do the features of conversation (i.e., content, context, structure) relate to the development of youth's STEM interests, sense of recognition as STEM people, and self-identification with STEM?; (3) How do the cultural values and science talk experiences of Hispanic/Latine youth shape conversation features related to youth's STEM interests, sense of recognition as STEM people, and self-identification with STEM?; and (4) Does professional development for practitioners that focuses on encouraging youth to engage in STEM-related conversations with friends and family positively contribute to youth's STEM interest, sense of recognition, and self-identification with STEM? To address these questions, the study adopts a qualitative research approach that applies phenomenological strategies in research design, data collection, and analysis to allow for exploration of the meaning of lived experiences in social and cultural contexts. Participants include elementary-age youths (ages 7 - 12) and caregivers from socially, culturally, linguistically, and economically diverse backgrounds. To inform the development of interview protocols in terms of the kinds of childhood talk that leave a long-term impact on students, including the kinds of talk experiences remembered by students who choose or persist towards a STEM career in college, the project also recruits college students pursuing STEM degrees as participants. Data gathering and interpretation strategies include surveys and interviews. The outcomes of this research will constitute a theoretical framework and models that guide the development of both professionals and programmatic activities at informal learning institutions, particularly around scaffolding participation in STEM through family science talk.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Remy Dou
resource project Public Programs
NASA's Universe of Learning provides resources and experiences that enable diverse audiences to explore fundamental questions in astronomy, experience how science is done, and discover the universe for themselves. Using its direct connection to science and science experts, NASA's Universe of Learning creates and delivers timely and authentic resources and experiences for youth, families, and lifelong learners. The goal is to strengthen science learning and literacy, and to enable learners to discover the universe for themselves in innovative, interactive ways that meet today's 21st century needs. The program includes astronomical data tools, multimedia resources, exhibits and community programs, and professional learning experiences for informal educators. It is developed through a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, the Jet Propulsion Laboratory, the Smithsonian Astrophysical Observatory, and Sonoma State University.
DATE: -
TEAM MEMBERS: Denise Smith Gordon Squires Kathy Lestition Anya Biferno Lynn Cominsky