This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.
The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE:
-
TEAM MEMBERS:
Steven StochajPatricia SullivanLuis Vazquez
A non-technical description of the project test explains its significance and importance.
The goal of this project is to help students easily identify themselves as science or engineering professionals and increase the proportion of the local population, dominantly minorities, who pursue science and technology careers. Experience has demonstrated that students are most engaged in technical fields when they can participate in active, hands-on learning around problems with application to their local community. The focus of the effort is in marine science, which has local relevance to both the environment and the economy of the U.S. Virgin Islands. The project will use interventions at three crucial stages: middle school, high-school-college transition, and master-PhD transition, to engage students with specific active-learning and research-oriented programs. Community partners comprise a wide-ranging local organization that leverages the resources of other successful collaborations.
A technical description of the project
This project will create a transferable model that uses innovative partnerships among universities, governmental and non-governmental organizations, a professional society, and businesses, to create a local backbone organization with a shared vision for change and common success metrics broaden participation in science, technology, engineering, and mathematics (STEM). This project addresses the critical challenge of building scientific identity to increase interest and engagement of underrepresented minorities in STEM fields in the U.S. Virgin Islands. The plan includes targeted interventions at three significant times in the student career pathway (middle/high school, early college, and graduate school) that comprise: (1) field experiences in the marine sciences for middle/high school students, (2) early field research experiences for college freshmen and sophomore students, (3) bridge programming to a Ph.D. partnership with Pennsylvania State University, and (4) an intensive mentoring program. The model is grounded in social innovation theory through a framework that meets the five conditions for collective impact: common agenda, shared measurement of data and results, mutually reinforcing activities, continuous communication, and backbone support.
DATE:
-
TEAM MEMBERS:
Kristin Wilson GrimesMarilyn BrandtNastassia JonesCarrie BucklinMonica Medina
Because of the siloed nature of formal educational curricula, students who opt out of STEM coursework, for whatever reason, lose the opportunity to engage with the domain of science almost entirely, thereby closing the door to the STEM workforce pipeline. This disproportionately impacts students of color and women. This project advances an alliance that consists of a consortium of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and local businesses. The project built around this alliance will leverage interdisciplinary spaces in the curriculum, particularly the humanities and social sciences, across academic levels, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life. The PIs establish a physical Community STEM Center as an anchoring institution for STEM engagement. This Center will be situated within the community that the alliance serves, bringing STEM opportunities and engagement to students instead of asking them to come where STEM education is currently provided. The activities enacted through the Community STEM Center will focus on enduring problems experienced by the communities, where students, community residents, teachers, and experts from higher education, industry and other community-based entities can come together to work on understanding them and developing evidenced centered advocacy as a means for addressing them. To facilitate the work at the Community STEM Center, the project creates a Community Ambassadors Program (CAP), leveraging participation across alliance members in partnership with the community. This Design and Development Launch Pilot will cultivate the necessary knowledgebase to develop a scalable model for implementation across diverse urban communities.
Technical Summary
This Design and Development Launch Pilot focuses on shifting the narrative of STEM education away from a solitary focus on formalized educational experiences and targets STEM content. This project develops and facilitates a parallel set of activities designed to engage under-represented students in learning how and why STEM is relevant to their lives, and approached through new and non-traditional educational dimensions. The five main objectives of this proposed pilot are to: (1) Develop a pilot alliance of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and industry;(2)Establish a physical Community STEM Advocacy Center as an anchoring institution for change embedded within the community that the pilot alliance serves; (3) Leverage interdisciplinary spaces in curricula, across academic levels, particularly the humanities and social sciences, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life; (4) Create a Community Ambassadors Program (CAP), leveraging participation across higher education pilot alliance members in partnership with the community; and (5)Conduct an evaluation of project initiatives and research regarding the usability and feasibility of a systemic approach to developing community-based, interdisciplinary pathways to broaden STEM participation pathways. Efforts to examine the impact of this community-based, interdisciplinary approach concentrates on the proximal outcomes related to STEM interest, self-efficacy and identity. Data will be collected in pre/post format across our three constituent samples: 1) Community STEM Advocacy Center participants; 2) k-12 students; and, 3) postsecondary students. Analysis of data will be conducted through MANCOVAs to account for potential co-variation among construct scores. Qualitative data will also be collected to contextualize findings and enable the development of a rich case study. At least two observations will be conducted in the Community STEM Advocacy Center and the two classroom implementations to document engagement, participant interactions and level of STEM content.
DATE:
-
TEAM MEMBERS:
Kimberly LawlessDonald WinkLudwig Carlos NitscheAixa AlfonsoJeremiah Abiade
This NSF INCLUDES pilot addresses the challenge of broadening participation in Science, Technology, Engineering and Math (STEM) among minoritized youth in grades 5-8 and their access to computer science (CS), which is recognized as integral to all STEM disciplines. This project will specifically focus on developing and understanding computing experiences intentionally designed to strengthen mathematical skills utilizing culturally responsive pedagogy. Culturally responsive pedagogy integrates knowledge relevant to students' identities and communities with computational learning activities, and maximizes the potential for increasing engagement, competence, and belonging of underrepresented youth in computing. This pilot will be situated in community-based organizations, including Boys and Girls Clubs and Public Libraries, with the support of industry partners and the local Department of Education. Given the role of community-based organizations and libraries across the nation for community engagement and educational enrichment, this work represents an exciting opportunity for spreading into thousands of libraries and community centers across the nation, thereby having collective impact that materializes CS for All.
This project will engage minoritized youth in grades 5-8. The overarching vision is to establish a scalable model for providing these students with recurrent opportunities to create computational artifacts that are culturally-responsive to their community contexts. In addition, there will be an explicit and simultaneous focus on strengthening students' mathematical skills. The project has four goals: (1) facilitate culturally-responsive learning of key CS concepts and practices; (2) build youth and community knowledge around positive impacts of computing on local communities; (3) increase participants' knowledge, confidence and interest in becoming creators of computing innovations; and (4) strengthen mathematical skills through intentional computing experiences. The project will adapt and implement CS modules from the NSF-funded Exploring Computer Science curriculum, and will intentionally reinforce mathematics skills and community engagement. It will design and implement a culturally-responsive training model for establishing community instructors who can support CS project learning. Finally, it will create instruments for monitoring project goals and participant outcomes. Due to the collaboration with community-based organizations present in cities across the nation, the model has strong potential to scale up regionally and nationally.
DATE:
-
TEAM MEMBERS:
Lori PollockChrystalla MouzaJohn PeleskoRosalie Rolon-Dow
The Bay Area Regional Collaboration to Expand and Strengthen STEM (RECESS) is a regional, unified STEM continuum effort from preschool through graduate school and career. RECESS is based on successful collective impact efforts in other fields and employs a participatory action research (PAR) approach to broaden participation in STEM. In the PAR framework, youth and their families will help to define the issues and develop expertise about community needs through a shared research process.
RECESS introduces participatory action research as an innovative element to the collective impact social agency framework. The intent is to determine the extent to which the engagement and involvement of the students and communities targeted can effectively shape the function of the collective impact network of organizations.
During the two year planning phase, RECESS (a) conducts a comprehensive needs assessment and gap analysis; (b) establishes a functioning organization of stakeholders with a common agenda and governance model; and (c) develops a detailed action plan. It is a significant contribution to the body of knowledge on effective and innovative collective impact structures designed to promote STEM education and participation.
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.
*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE:
-
TEAM MEMBERS:
Kristin RuppelClifford MontagneLisa Lone Fight
Finding inclusive approaches to broaden the participation of underrepresented communities in the sciences is the focus of this project. The team will create pathways for Native American students from the development of new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. Each partner brings a successful program, based on good practices from the research literature in improving outcomes for underrepresented students and scientists. Together, the researchers will create scientific collaborations that support a pipeline for Native American students from middle school through to graduate school and beyond. In addition, the project will work on building welcoming workplace climates for indigenous researchers within ?traditional Western? organizations. The approach will integrate indigenous and Western knowledge in research collaborations to create more creative, innovative, and culturally relevant science research programs.
This project, Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences, uses the principles of collective impact to create new partnerships between tribal communities and STEM institutions that promote the participation and inclusion of Native American scientists in the geosciences. The project collaborators will more strongly integrate indigenous and Western knowledge into collectively-developed research projects. The project partners the Rising Voices: Collaborative Science for Climate Solutions (Rising Voices) and member tribal colleges and communities with Haskell Indian Nations University, the National Center for Atmospheric Research (NCAR), the University of Arizona?s Biosphere 2, and National Center for Atmospheric Research?s Significant Opportunities in Atmospheric Research and Science (SOARS) internship and Global Learning and Observation to Benefit the Environment (GLOBE) citizen science programs. Together, they will build research partnerships between Native American and traditional Western scientists, provide professional development for NCAR and Biosphere 2 scientists on how to engage appropriately with tribal communities, and provide pathways for NA students from middle school through college, to grad school and beyond. The project will connect community-based citizen science programs for middle- and high school youth with undergraduate programs at Haskell Indian Nations University and University of Arizona, and with summer research internship experiences for undergraduates and graduate students that address topics of interest across tribal communities, tribal college faculty, traditional science institutions, and community-based citizen science. This project also enhances the research capacity of all partners, and brings together diverse perspectives, which have been shown to lead to greater innovation, creativity, and higher impact research. The project has the potential to provide a tried and tested model for building similar partnerships at other institutions, including content and methods for professional development for mainstream scientists, ways to create more welcoming spaces for Native American students and scientists, promising practices for improving how research in the geosciences carried out, and an increase in the representation of Native American students and scientists in that vital research enterprise.
The Colleges of Science & Engineering and Graduate Education, and the Metro Academies College Success Program (Metro) at San Francisco State University in partnership with San Francisco Unified School District and the San Francisco Chamber of Commerce develop an integrated approach for computing education that overcomes obstacles hampering broader participation in the U.S. science, technology, engineering and mathematics (STEM) workforce. The partnership fosters a more diverse and computing-proficient STEM workforce by establishing an inclusive education approach in computer science (CS), information technology, and computer engineering that keeps students at all levels engaged and successful in computing and graduates them STEM career-ready.
Utilizing the collective impact framework maximizes the efficacy of existing regional organizations to broaden participation of groups under-educated in computing. The collective impact model establishes a rich context for organizational engagement in inclusive teaching and learning of CS. The combination of the collective impact model of social agency and direct engagements with communities yields unique insights into the views and experiences of the target population of students and serves as a platform for national scalable networks.
DATE:
-
TEAM MEMBERS:
Keith BowmanIlmi YoonLarry HorvathEric HsuJames Ryan
Public libraries are becoming an important place for informal science, technology, engineering and mathematics (STEM) education for K-12 students and their families, as well as for adult education activities that support STEM workforce development. This report provides public librarians, administrators and collaborating organizations a brief background on the role that libraries can play in fostering a healthy STEM education ecosystem, as well as promising practices for implementing effective STEM programs in public libraries.
DATE:
TEAM MEMBERS:
Annette ShtivelbandLauren RiendeauAmanda Wallander-RobertsRobert Jakubowski
Science, technology, engineering, and mathematics (STEM) education and programming has become a priority in our nation. In the United States, the STEM pipeline is considered "leaky" as many students disengage from STEM at various points during their lives. In particular, women, Latinos, and African Americans are more likely to disengage from the STEM pipeline. American students are less likely to earn STEM postsecondary and graduate degrees compared to other nations. As careers in STEM fields are expected to increase at a faster rate than other occupations, there is growing concern about the
DATE:
TEAM MEMBERS:
Annette ShtivelbandAmanda Wallander RobertsRobert Jakubowski
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.
The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE:
-
TEAM MEMBERS:
Jumoke Ladeji-OsiasCindy ZikerGeneva HaertelKamal AliAyanna GillDerrick GilmoreClay Gloster
This study was a longitudinal summative evaluation of repeat visitors’ experiences in four Math Moves! exhibitions that were developed as part of a large collaborative exhibition development project called Math Core for Museums, and mounted at four museums around the country: Museum of Science (Boston); Museum of Life & Science (Durham, NC); Explora (Albuquerque); and Science Museum of Minnesota (St. Paul). The summative evaluation purposively selected four family groups at each institution and collected naturalistic data as the 16 groups engaged with the exhibits from 4-6 times over a two