For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.
Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.
PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.
NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
Citizen science is a form of Public Participation in Scientific Research (PPSR) in which the participants are engaged in the scientific process to support research that results in scientifically valid data. Opportunities for participation in real and authentic scientific research have never been larger or broader than they are today. The growing popularity and refinement of PPSR efforts (such as birding and species counting studies orchestrated by the Cornell Lab of Ornithology) have created both an opportunity for science engagement and a need for more research to better implement such projects in order to maximize both benefits to and contributions from the public.
Towards this end, Shirk et al. have posted a design framework for PPSR projects that delineates distinct levels of citizen scientist participation; from the least to the highest level of participation, these categories are contract, contribute, collaborate, co-create, and colleagues. The distinctions among these levels are important to practitioners seeking to design effective citizen science programs as each increase in citizen science participation in the scientific process is hypothesized to have both benefits and obstacles. The literature on citizen science models of PPSR calls for more research on the role that this degree of participation plays in the quality of that participation and related learning outcomes (e.g., Shirk et al., 2012; Bonney et al., 2009). With an unprecedented interest in thoughtfully incorporating citizen science into health-based studies, citizen science practitioners and health researchers first need a better understanding of the role of culture in how different communities approach and perceive participation in health-related studies, the true impact of intended educational efforts from participation, and the role participation in general has on the scientific process and the science outcome.
Project goal to address critical barrier in the field: Establish best practices for use of citizen science in the content area of human health-based research, and better inform the design of future projects in PPSR, both in the Denver Museum of Nature & Science’s Genetics of Taste Lab (Lab), and importantly, in various research and educational settings across the field.
Aims
Understand who currently engages in citizen science projects in order to design strategies to overcome the barriers to participation that occur at each level of the PPSR framework, particularly among audiences underrepresented in STEM.
Significantly advance the current knowledge regarding how citizen scientists engage in, and learn from, and participate in the different levels of the PPSR framework.
Determine the impact that each stage of citizen science participation has on the scientific process.
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:
develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.
This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.
A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.
The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
This project specifically addresses the SMRB’s imperative that “NIH’s pre-college STEM activities need a rejuvenated integrated focus on biomedical workforce preparedness with special considerations for under-represented minorities.”
Approximately one-third of CityLab’s participants are under-represented minority (URM) students, but we now have a unique opportunity to build a program that will reach many URM students and position them for undergraduate STEM success. We have partnered with urban squash education organizations in Boston (SquashBusters) and New York (CitySquash and StreetSquash) that recruit URM/low SES students to participate in after-school squash training and academic enrichment programs. We have also partnered with the Squash + Education Alliance (previously named the National Urban Squash and Education Association) to disseminate the new program—first from Boston to New York and later through its national network of affiliated squash education programs.
In order to bring this project to fruition, Boston University is joining forces with Fordham University in New York. Fordham is home to CitySquash so these organizations provide an ideal base for the New York activities. The proposed project will enable us to demonstrate feasibility and replicability within the 5-year scope of this grant. Our shared vision is to develop a national model for informal precollege biomedical science education that can be infused into a myriad of similar athletic/academic enrichment programs.
The squash education movement for urban youth has been highly successful in enrolling program graduates in college. Since the academic offerings of the squash education programs focus on English Language Arts and Mathematics, their students struggle with science and rarely recognize the tremendous opportunities for long- term employment in STEM fields.
This project will bring CityLab’s resources to local squash programs in a coordinated and sustained engagement to introduce students to STEM, specifically the biomedical sciences. Together with the urban squash centers, we will build upon the hands-on life science experiences developed and widely disseminated by CityLab to create engaging laboratory-based experiences involving athletics and physiology.
The specific aims of the proposed project are:
To develop, implement, and evaluate a new partnership model for recruiting URM/low SES students and inspiring them to pursue careers in STEM; and
To examine changes in the science learner identities (SLI) of the students who participate in this program and establish this metric as a marker for continued engagement in STEM.
With the involvement of the two urban research universities, three local squash education programs, and SEA, we see this new SEPA initiative as a unique way to pilot, refine, and disseminate an after-school/informal science education program that can have a significant impact on the nation’s production of talented STEM graduates from URM/low SES backgrounds.
DATE:
-
TEAM MEMBERS:
Carl FranzblauDonald DeRosaCarla Romney
The National Building Museum contracted RK&A to conduct an evaluation Investigating Where We Live (IWWL), a long-running program that has brought together creative youth in the Washington, D.C. area every summer since 1996 to explore, document, and interpret the local built environment. The study goal was to examine program strengths and challenges to help NBM strategically plan for the program’s future.
How did we approach this study?
To hear a variety of perspectives on the program, RK&A conducted in-depth telephone interviews with a number of stakeholders with different
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Marios PattichisSylvia Celedon-PattichisCarlos LopezLeiva
K-12 informal engineering education can support student confidence, interest, and awareness of the field of engineering. Studies have suggested that K-12 informal learning can influence students’ awareness of the fields of engineering as potential career opportunities. Researchers have also found that engineering activities outside of school can engage youth in disciplines of which they are unfamiliar because of a lack of engineering opportunity in K12 formal education. In this paper, we provide a rich case study of one lesson’s implementation in a 5th-6th grade girls afterschool program. Our
This Conference Paper was presented at the International Soceity for the Learning Sciences Confernece in June 2018. We summarize interviews with youth ages 9-15 about their failure mindsets, and if those midsets cross boundaries between learning environments.
Previous research on youth’s perceptions and reactions to failure established a view of failure as a negative, debilitating experience for youth, yet STEM and in particular making programs increasingly promote a pedagogy of failures as productive learning experiences. Looking to unpack perceptions of failure across contexts and
Making is a recent educational phenomenon that is increasingly occurring in schools and informal learning spaces around the world. In this paper we explore data from maker educators about their experiences with failure. We surveyed maker educators about how they view failure happening with youth in their formal and informal programs and how they respond. The results reveal some concrete strategies that seem to show promise for helping educators increase the likelihood that failure experiences for youth can lead to gains in learning and persistence.
This article summarizes a survey of formal
The STEM Interest and Engagement (STEM IE) Study was a four-year project funded by the National Science Foundation under the auspices of its Advancing Informal STEM Learning (AISL) program that was designed to better understand what types of practices, supports, and opportunities afforded to early adolescent youth: (1) Are especially effective in helping youth experience in-the-moment engagement while participating in ISL activities, and (2) Serve to support growth in STEM interest and aspirations. The study was conducted in a total of nine, STEM-oriented, summer learning programs serving
DATE:
TEAM MEMBERS:
Neil NaftzgerJennifer SchmidtLee ShumowPatrick BeymerJoshua Rosenberg
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.
Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
This report summarizes evaluative findings from Computational Thinking in Ecosystems project, and the resulting product, i.e., a functional draft of a game called “The Pack.” Evaluative efforts included gathering feedback from key stakeholders—including members of the design based research (DBR) team members at the New York Hall of Science (NYSCI) along with advisors and project partners— about the game and the DBR process, as well as an independent assessment of the game via feedback from educators and a round of play-testing with youth.