The National Science Foundation (NSF) awarded an Informal Science Education (ISE) grant, since renamed Advancing Informal STEM Learning (AISL) to a group of institutions led by two of the University of California, Davis’s centers: the Tahoe Environmental Research Center (TERC) and the W.M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES). The purpose of the evaluation was to gather feedback from museum professionals and the general public about the proposed 3D visualization project and its related components. Additionally, the study aimed to assess the current understanding
DATE:
TEAM MEMBERS:
University of California, DavisSteven Yalowitz
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE:
-
TEAM MEMBERS:
James DiamondNew York City Hive Learning NetworkMOUSEDigitalMeKatherine McMillan
This Science Learning+ project will develop a Youth Access & Equity Research & Practice Agenda, focusing on addressing equity issues for youth, ages 11-14, primarily from non-dominant backgrounds. The project will involve researchers and practitioners from three ISL settings/contexts, (1) Designed spaces, e.g., museums; (2) Community-based, e.g., afterschool clubs; and (3) Everyday science, e.g., science media. The goal of the agenda will be to advance scholarly understanding of equity issues in relation to these three contexts. Taking an ecological view of STEM learning as a sociocultural process of participation and transformation, the project will employ a Complex Adaptive System lens to document multiple pathways youth take (or not) within/across ISL settings over time, the impact these pathways have on learning and development, and their influence on ISL organizations themselves. These lenses will help us identify aspects of learning environments which shape youth access and development, and the value and impact of the equity ideas, tools and practices.
The purposes of the STUDIO 3D evaluation were to collect information about the impact upon student learning as a result of participating in the STUDIO 3D Project, as well as to elicit information for program improvement. Areas of inquiry include recruiting and retention, impact on project participants, tracking student impacts, and the project as a whole.
This research follows on a previous study that investigated how digitally augmented devices and knowledge building could enhance learning in a science museum. In this study, we were interested in understanding which combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. Three hundred seven students from nine middle schools participated in the study. Six scaffolds were used in various combinations. The first was the digital augmentation. The next five were adaptations of knowledge-building
DATE:
TEAM MEMBERS:
Susan YoonKaren ElinichJoyce WangJaqueline SchooneveldEmma Anderson
For the purpose of clarity and consistency, the term e-learning is used throughout the paper to refer to technology-enhanced learning and information technology (IT) in teaching and learning. IT depicts computing and other IT resources. Research into e-learning has changed in focus and breadth over the last four decades as a consequence of changing technologies, and changes in educational policies and practices. Although increasing numbers of young people have access to a wide range of IT technologies during their leisure activities, little is known about this impact on their learning. Much of
In this article, we discuss the importance of recognizing students' technology-enhanced informal learning experiences and develop pedagogies to connect students' formal and informal learning experiences, in order to meet the demands of the knowledge society. The Mobile- Blended Collaborative Learning model is proposed as a framework to bridge the gap between formal and informal learning and blend them together to form a portable, flexible, collaborative and creative learning environment. Using this model, three categories of mobile application tools, namely tools for collaboration, tools for
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will further develop, roll out, and conduct research on a set of materials that will introduce middle school age youth to innovative and engaging engineering challenges in the Boys and Girls Club (B&GCs) context. Building on substantial prior work and evaluation-based learning, WISE Guys and Gals - Boys & Girls as WISEngineering STEM Learners (WGG) will: (1) combine engineering design activities with the (open source, online) WISEngineering infrastructure; (2) scale-up the infrastructure; (3) engage youth in informal afterschool experiences; and (4) collect a wealth of rich data to further our understanding of how youth learn through these experiences. This work will be conducted by Hofstra University's Center for STEM Research in conjunction with Brookhaven National Laboratory (BNL), The CUNY Graduate Center's Center for Advanced Study in Education (CASE), the Boys & Girls Club of America, and 25 B&GCs in New York and New Jersey. The underlying theoretical framework builds on proof-of-concept work supported by NSF and the Bill and Melinda Gates Foundation. An open source, on-line interface (WISEngineering) provides numerous virtual tools (e.g., social networking, Design Journal, embedded assessments) that promote learning and collaboration through challenging, thoughtful, and creative work. WGG will explore how to incorporate creativity, social networking, connections to real-world STEM needs/careers, and teamwork into challenges that can be completed in a one-hour period, an activity time constraint in many B&GC settings. Staff from the clubs will participate in face-to-face and virtual professional development in an effort to build their capacity as facilitators of STEM learning. Research will focus on: (1) how activities developed for 60-minute implementation and guided by informed engineering design and interconnected learning frameworks support youth learning and engagement; and (2) characteristics of the professional development approach that support B&GC facilitators' capacity development. By the end of the project, over 6,000 middle school aged youth, the majority from groups underrepresented in STEM areas, will gain experience with engineering design as they develop engineering thinking, new STEM competencies, STEM career awareness, and an appreciation for the civic value of STEM knowledge.
DATE:
-
TEAM MEMBERS:
David BurghardtXiang FuKenneth WhiteMelissa Rhodes
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help in envisioning the next generation of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that showed the possibilities of the proposed new type of learning technology, and project teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and answer questions about how people learn with technology. Although for years researchers have believed technology could afford anytime-anywhere learning, we still don't understand how learners behave differently across contexts, such as home, school, and in the community, and how to get youth to identify as learners across those contexts. This proposal aims to use mobile devices and strategically placed shared kiosks to 'scientize' youth in two low-income communities. Through strategic partnerships with community organizations, educators, and families, the innovation is to get primary and middle-school students engaging in scientific inquiry in the context of their neighborhoods. Research will help determine how the technology can best be deployed, but also answer important questions about how communities can provide support to help kids think like scientists and identify with science. This project will design and implement ubiquitous technology tools that include mobile social media and tangible, community displays (collectively called ScienceKit) that are deeply embedded into two urban neighborhoods, and demonstrate how such ubiquitous technologies and related cyberlearning strategies are vital to improve information flow and coordination across a neighborhood ecosystem, in order to create environments where children can connect their science learning across contexts and time (e.g. scientizing). A program called ScienceEverywhere comprised of partnerships between tightly connected neighborhood organizations with mentors, teachers, parents, and researchers will help learners develop scientifically literate practices both in and out of school, and will demonstrate students' learning to their communities. Research will consist of mixed methods studies of use of the tools, including iterative design-based research, ethnography, and the use of participant observers from the community; these will be triangulated with usage logs of the technologies and content analysis of microblogs by the learners on their identities and interests. Discourse analysis of interviews with focal learners will orient the qualitative work on identity development, and analysis using activity theory will inform the influences of the social practices and sociotechnical systems on learner trajectories. Formative evaluation will help shed light on if and how the sociotechnical system promotes STEM literacy and STEM identity development.
This project will help address the urgent need for a new engineering workforce. Middle school students will be entering a workforce that is increasingly global. They will need not only technical skills but also global competencies including: the ability to investigate the world, recognize perspectives, communicate ideas, and take action. This model integrates engineering with global competencies and will provide new knowledge about how this type of learning experience impacts students and educators. This project builds on the success of the previous Design Squad project funded by NSF and developed by WGBH, which has implemented a national model for engineering education for middle school youth. This project expands the model internationally, connecting U.S. based youth with those in Southern Africa (including South Africa, Botswana, and Swaziland). The project partners are FHI 360, a non-profit organization in 60 countries around the world that helps build capacity for improving lives. They will facilitate the implementation of the afterschool programs in Southern Africa . The US dissemination partners include Promise Neighborhoods Institute, Middle Start, Every Hour Counts, and the National Girls Collaborative Project. Project deliverables include a global engineering curriculum; a web platform with videos, games, activities; an afterschool Club Guide; and a Community of Practice for informal engineering educators. A knowledge building component will provide new evidence on how high quality accessible resources and strategies can impact students' development of global competencies and engineering skills to solve real world problems. An iterative approach will be used to develop the resources including the global engineering afterschool curriculum, Club guide, and other components. The methodology uses a continuous cycle of improvement including: assess/design, test/ implement, synthesize/reflect, and utilize/disseminate. The Summative Evaluation will generate evidence about whether and how this kind of collaborative work builds children's understanding of engineering, motivation to participate, and confidence in taking informed action on behalf of pressing global problems. This will contribute to a larger body of work about whether and how engaging with global, collaborative engineering problems leads to greater self-efficacy for children with very different backgrounds, experiences, and opportunities. This project will add new knowledge about how the well-honed Design Squad model in the U.S. can be expanded with a global context and global partners. This proposal was co-funded by EHR/DRL, Engineering/EEC, and International Science and Engineering. During the project period approximately 125,000 children in the US and 5000 children in southern Africa will be reached. In the long term, with the continued global access to the resources, the reach will potentially be in the millions.