This project brings real scientific research into the public domain by establishing a research laboratory in a museum setting where visitors not only enroll in the study, they help shape it through their work as citizen scientists. Findings from the study will increase the public understanding of how genetic research translates into meaningful personal information that can be used to better understand personal health risks and opportunities. In a community-based participatory research laboratory, school-aged children and their families will participate in an authentic research project on the genetics of taste. In a series of simple but highly specific taste tests, participants will learn which gene variations they possess and how these variations influence how they taste foods. Taste function has been increasingly linked to human health, in that variability in taste sensation correlates with, and may in part be causal for, major health problems, including cardiovascular disease and obesity. Interactive exhibit components will inform participants about the scientific process, the principles of genetics, the human genome project and genetic variation. Teaching the public about their genetic profile and its influence on taste may have a positive impact on major health threats such as cardiovascular disease and obesity. The data collected from museum visitors who choose to enroll in the study will be sent to the museum's academic partners for further analysis and inclusion in their ongoing research analysis and publications. This laboratory experience not only engages and educates the public, but also advances the research enterprise and offers a vivid model for how to translate research into the public domain.
This cooperative effort among Purdue University, public schools in Indiana, and The Children's Museum of Indianapolis aims to develop, evaluate and disseminate educational programs for K-12 students, parents, teachers and the public about the science involved in keeping people healthy. Obesity prevention, cancer prevention and asthma will be emphasized. Fitness programs, research programs using animal models, K-12 outreach programs, professional development workshops and recruiting efforts will be networked to fill gaps in health science education, interest schoolchildren in health science research and improve public health. This project will develop and rigorously assess curricular modules for grades three, six and nine. The science behind health advances, the clinical trials process and the role of animals in developing drugs and medical devices will be addressed. In addition, the project will engage schoolchildren in becoming health science researchers by providing them with role models. Researchers will interact with K-12 students during classroom visits, camps and after-school programs. Finally, the project will involve and engage children, parents and the public in educational fitness activities and programs. Dogs will be incorporated into fitness programs as exercise companions. The program includes an interactive traveling exhibit, highlighting the science involved in keeping people healthy.
DATE:
-
TEAM MEMBERS:
Timothy RatliffSandra Amass
resourceprojectProfessional Development, Conferences, and Networks
The New York Hall of Science (NYHOS), in partnership with the University of Michigan (UM), the Miami Museum of Science (MMOS), the National Evolutionary Synthesis Center (NESCent), and a broad group of Science and Museum Advisors, requests $1,349,349 over five years for a combined Phase I and Phase II NIH SEPA grant to develop, test and travel a new hands-on science exhibition on the subjects of natural selection and human health. With the working title "Evolution and Health," the 1000-square-foot interactive traveling exhibition will engage middle and high-school students, educators and the general public in inquiry-based learning on the role of evolution and natural selection in explanations of health, illness, prevention, and treatment. In addition, teacher development programs and online activities focusing on health issues seen from an evolutionary perspective will be developed by the NYHOS Education staff and disseminated along with the exhibition on its national tour. The project will address the relationship between health and natural selection; while there are many museum exhibitions on health, this will be only one of two to take an evolutionary perspective, and the only one to explore the relationship between health and natural selection. Ultimately, "Evolution and Health" will become a national model for conveying an evolutionary understanding of health, which will be increasingly central to research and public understanding in the coming years. "Evolution and Health" will increase visitors' comprehension of their own health issues by fostering a better understanding of evolution and natural selection. The project will seek to determine whether employing the perspective of natural selection can lead to a deeper understanding of human health.
The Science Museum of Minnesota (SMM)--in collaboration with scientists at the University of Minnesota's Center for Infectious Disease Research and Policy and Academic Health Center; the Minnesota Department of Health, and the Minnesota Antibiotic Resistance Collaborative--requests a Phase 1/11five-year SEPA grant of $1,250,000 to develop a traveling museum exhibition and web site that highlight the fascinating science behind the outbreaks of emerging and re-emerging infectious diseases that are changing and shaping our way of life in the 21st century. Topics to be covered will include the emergence of new illnesses like SARS and Avian Influenza and the re-emergence of drug-resistant infections that were once curable but now can be fatal. An Infectious Disease Advisory Panel and Content Experts representing the collaborating institutions listed above and others will guide museum staff in the development of these exhibits and programs. EMERGING INFECTIOUS DISEASES will be a 1,500 square-foot special exhibition to be installed in SMM's Human Body Gallery in spring 2007. After an 18-month presentation, it will begin a tour to five medium size science centers over two years. In addition to the exhibition and its complementary web site, special programming will be targeted to reach specific audiences, including: K-12 school groups visiting the museum (a user guide with on-line pre- and post-visit activities aligned with state and National Science Education Standards); K-12 classroom teachers (Curriculum Enhancement Institutes); and outreach programs serving after-school programs for children in under-served inner-city neighborhoods. A focus on areas of ongoing research will be used to highlight how far we have come in understanding the complex world of infectious diseases and how far we must go in treatment or elimination of present day health threats.
This summative evaluation of the University of Washington Botany Greenhouse K-12 Education Outreach Program analyzed the contents of 468 thank-you notes written by program participants using the National Science Foundation’s Framework for Evaluating Impacts of Informal Science Education Projects. Strong evidence was found for impacts in three STEM learning categories: Awareness, Knowledge or Understanding, Engagement or Interest, and Skills.
The Marian Koshland Science Museum will produce a 1,500-square-foot exhibit on infectious disease aimed at a teen and adult audience. The exhibit will focus on three concepts: (1) How infectious disease affects individuals, society, and the environment; (2) What actions can be taken to modify the impact of infectious disease; and (3) What benefits and consequences there are to both action and inaction. These concepts will be explained using interactive displays, with emphasis on the use of current science and science-based decision support tools. The Koshland will develop public programs, educational materials aimed at grades 7-12, hands-on science activities, and audio and video guides to support the exhibit. An exhibit on infectious disease is relevant because of the continuing burden and increasing threat of disease worldwide. A greater understanding of recent scientific advances will help the public make decisions about their health and the health of their community.
Working in collaboration with biomedical researchers from universities in the San Francisco area, across the nation, and abroad, the Exploratorium proposes to develop a high-quality microscopic imaging station for use by museum visitors, students, teachers and Internet visitors. This facility will utilize the highest quality optics and state-of-the-art microscopic techniques including biological staining and sophisticated digital recording. A variety of living specimens fundamental to basic biology, human development, the human genome and health-related research will be displayed. The station will be the lively center of the life sciences' area at the Exploratorium, providing educational content, dramatic imagery and regular demonstrations to reach an audience which ranges from the mildly curious to research scientists. In addition, the Exploratorium will be the first public institution, outside of a few research laboratories, to present live microscopic specimens via video and the Internet in real time. (To date, remote microscopes have generally presented inanimate objects or fixed tissue.) In order to increase student accessibility, subject matter for the imaging station will be integrated into the ongoing middle and high school teacher professional development at the museum. Teachers will be able to use the imaging station to conduct their own experiments, develop classroom explorations, take away images, access the website in their classrooms, or share materials with other teachers.
The Maryland Science Center, in cooperation with the Johns Hopkins Medical Institutions (JHMI) and the University of Maryland, Baltimore, developed and produced BodyLink, a unique health sciences update center. The group did so with support from the National Institutes of Health SEPA (Science Education Partnership Award) Program, BodyLink, which is modeled after the Maryland Science Center's praised SpaceLink space science update center, will make today's medical and health news clear and relevant for visitors, young and old. Science and technology centers have long struggled with ways to acquaint visitors with the latest and greatest discoveries in health and biomedical science, and to interpret the significance of these findings for all ages. Museums can no longer be content with presenting only basic science, and need to expand their role as public communicators of science by presenting cutting-edge research, and by interpreting and explaining this information for visitors. BodyLink is a 1,500-square foot multimedia center where visitors can discover and appreciate the wonders of cutting-edge medical research (basic research, as well as clinical research) through interactive exhibits, stunning imagery, and facilitated demonstrations in a multimedia driven programmable space. BodyLink also includes WetLab, an open-access microbiology laboratory facility that allows visitors to conduct scientific investigations using state-of-the art research technology. Visitors can extract DNA from wheat germ, test common anti-microbial products on live bacteria, and learn Gram staining techniques, among other activities. Bodying will further serve school groups, general museum visitors, and remote-learning participants through the interactive website. BodyLink also incorporates an internship program for graduate students from the Maryland Science Center's collaborating universities. These internships give the graduate students an opportunity to interact with the general public to enhance their scientific communication skills and give them first-hand experience with investigating public understanding of scientific research.
Mythbusters: The Explosive Exhibition is a traveling exhibit based on the popular television show. When housed at the Museum of Science and Industry, Chicago, it included a traditional, interactive free flow exhibition space followed by a live facilitated show. This paper describes results from an experimental study about the effects of the Live Show on the learning of and attitudes towards science. A pre-test was given to 333 children entering the exhibit. A post-test was given to 80 children after they walked through the free-flow portion of the exhibit and to 191 children after they watched
DATE:
TEAM MEMBERS:
Museum of Science and IndustryAaron Price
Today’s standardized testing methods are too narrow for measuring 21st-century learning that occurs across time and diverse social contexts, from formal to informal and embodied to virtual. This paper uses the concept of “connected learning” to illustrate what 21st-century education involves; it then describes research methods for documenting this learning.
Life on Earth is interactive software installed as a museum touchtable exhibit that uses data about over seventy thousand (70,000) species from several databases to help visitors explore and deepen their understanding of biodiversity, evolution and common ancestry, and the history of life on earth (DeepTree/ FloTree). Some installations also include a smaller exhibit that poses puzzle challenges about evolutionary relationships among species (Build-a-Tree (BAT)). The exhibit was installed at four natural history museums across the U.S. – the Harvard Museum of Natural History (Cambridge, MA)
DATE:
TEAM MEMBERS:
Harvard UnivesityJim HammermanAmy SpiegelJonathan Christiansen
Interactive surfaces are increasingly common in museums and other informal learning environments where they are seen as a medium for promoting social engagement. However, despite their increasing prevalence, we know very little about factors that contribute to collaboration and learning around interactive surfaces. In this paper we present analyses of visitor engagement around several multi-touch tabletop science exhibits. Observations of 629 visitors were collected through two widely used techniques: video study and shadowing. We make four contributions: 1) we present an algorithm for